Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
4th Edition
ISBN: 9780134110646
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 25, Problem 68EAP
Il The arrangement of charges shown in FIGURE P25.68 is called a linear electric quadrupole. The positive charges are located at y = ± s. Notice that the net charge is zero. Find an expression for the electric potential on the y-axis at distances y>> s. Give your answer in terms of the quadrupole moment, Q = 2qs2.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 25 Solutions
Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
Ch. 25 - a. Charge q1is distance r from a positive point...Ch. 25 - FIGURE Q25.2 shows the potential energy of a...Ch. 25 - An electron moves along the trajectory of FIGURE...Ch. 25 - Two protons are launched with the same speed from...Ch. 25 - Rank in order, from most positive to most...Ch. 25 - FIGURE Q25.6 shows the electric potential along...Ch. 25 - A capacitor with plates separated by distance d is...Ch. 25 - Prob. 8CQCh. 25 - FIGURE Q25.9 shows two points inside a capacitor....Ch. 25 - FIGURE Q25.10 shows two points near a positive...
Ch. 25 - ll. FIGURE Q25.11 shows three points near two...Ch. 25 - Reproduce FIGURE Q25.12 on your paper. Then draw a...Ch. 25 - I. The electric field strength is 20,000 N/C...Ch. 25 - The electric field strength is 50,000 N/C inside a...Ch. 25 - A proton is released from rest at the positive...Ch. 25 - A proton is released from rest at the positive...Ch. 25 - Prob. 5EAPCh. 25 - What is the electric potential energy of the group...Ch. 25 - What is the electric potential energy of the group...Ch. 25 - Two positive point charges are 5.0 cm apart. If...Ch. 25 - A water molecule perpendicular to an electric...Ch. 25 - FIGURE EX25.10 shows the potential energy of an...Ch. 25 - What is the speed of a proton that has been...Ch. 25 - I What is the speed of an electron that has been...Ch. 25 - What potential difference is needed to accelerate...Ch. 25 - Prob. 14EAPCh. 25 - A proton with an initial speed of 800,000 m/s is...Ch. 25 - Prob. 16EAPCh. 25 - Prob. 17EAPCh. 25 - In proton-beam therapy, a higher-energy beam of...Ch. 25 - Prob. 19EAPCh. 25 - Prob. 20EAPCh. 25 - Prob. 21EAPCh. 25 - Prob. 22EAPCh. 25 - Prob. 23EAPCh. 25 - Prob. 24EAPCh. 25 - Two 2.0-cm-diameter disks spaced 2.0 mm apart form...Ch. 25 - In FIGURE EX25.26, a proton is fired with a speed...Ch. 25 - Prob. 27EAPCh. 25 - Prob. 28EAPCh. 25 - Prob. 29EAPCh. 25 - Prob. 30EAPCh. 25 - Prob. 31EAPCh. 25 - Prob. 32EAPCh. 25 - Prob. 33EAPCh. 25 - Prob. 34EAPCh. 25 - Prob. 35EAPCh. 25 - A 5.0-cm-diamtere metal ball has a surface charge...Ch. 25 - Prob. 37EAPCh. 25 - Prob. 38EAPCh. 25 - Prob. 39EAPCh. 25 - Prob. 40EAPCh. 25 - Prob. 41EAPCh. 25 - The four 1.0 g sphere shown in FIGURE P25.42 are...Ch. 25 - A proton’s speed as it passes point A is 50,000...Ch. 25 - Prob. 44EAPCh. 25 - Prob. 45EAPCh. 25 - Prob. 46EAPCh. 25 - Prob. 47EAPCh. 25 - Prob. 48EAPCh. 25 - Prob. 49EAPCh. 25 - Prob. 50EAPCh. 25 - What is the escape speed of an electron launched...Ch. 25 - Prob. 52EAPCh. 25 - Prob. 53EAPCh. 25 - Il A 2.0-mm-diameter glass bead is positively...Ch. 25 - Prob. 55EAPCh. 25 - Il A proton is fired from far away toward the...Ch. 25 - Prob. 57EAPCh. 25 - Prob. 58EAPCh. 25 - Il One form of nuclear radiation, beta decay,...Ch. 25 - Il Two 10-cm-diameterelectrodes 0.50 cm a part...Ch. 25 - Il Two 10-cm-diameter electrodes 0.50 cm apart...Ch. 25 - Il Electrodes of area A are spaced distance d...Ch. 25 - Prob. 63EAPCh. 25 - Il Two spherical drops of mercury each have a...Ch. 25 - Prob. 65EAPCh. 25 - Il FIGURE P25.66 shows two uniformly charged...Ch. 25 - Prob. 67EAPCh. 25 - Il The arrangement of charges shown in FIGURE...Ch. 25 - Il FIGURE P25.69 shows a thin rod of length L and...Ch. 25 - Il FIGURE P25.69 shows a thin rod of length L and...Ch. 25 - I FIGURE P25.71 shows a thin rod with charge Q...Ch. 25 - Prob. 72EAPCh. 25 - Prob. 73EAPCh. 25 - Prob. 74EAPCh. 25 - Prob. 75EAPCh. 25 - Prob. 76EAPCh. 25 - Prob. 77EAPCh. 25 - Il A proton and an alpha particle (q = +2e, m = 4...Ch. 25 - Ill Bead A has a mass of 15 g and a charge of —5.0...Ch. 25 - Il Two 2.0-mm-diameter beads, C and D, are 10 mm...Ch. 25 - Il A thin rod of length L and total charge Q has...Ch. 25 - Il A hollow cylindrical shell of length L and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 5.00-nC charged particle is at point B in a uniform electric field with a magnitude of 625 N/C (Fig. P26.65). What is the change in electric potential experienced by the charge if it is moved from B to A along a. path 1 and b. path 2?arrow_forward(a) A uniformly charged cylindrical shell with no end caps has total charge Q, radius R, and length h. Determine the electric potential at a point a distance d from the right end of the cylinder as shown in Figure P24.51. Suggestion: Use the result of Example 24.5 by treating the cylinder as a collection of ring charges. (b) What If? Use the result of Example 24.6 to solve the same problem for a solid cylinder. Figure P24.51arrow_forwardFIGURE P26.14 Problems 14, 15, and 16. Four charged particles are at rest at the corners of a square (Fig. P26.14). The net charges are q1 = q2 = 2.65 C and q3 = q4 = 5.15 C. The distance between particle 1 and particle 3 is r13 = 1.75 cm. a. What is the electric potential energy of the four-particle system? b. If the particles are released from rest, what will happen to the system? In particular, what will happen to the systems kinetic energy as their separations become infinite?arrow_forward
- (a) Calculate the electric potential 0.250 cm from ail electron, (b) What is the electric potential difference between two points that are 0.250 cm and 0.750 cm from an electron? (c) How would the answers change if the electron were replaced with a proton?arrow_forwardFour charged particles are at rest at the corners of a square (Fig. P26.14). The net charges are q1 = q2 = +2.65 C and q3 = q4 = 5.15 C. The distance between particle 1 and particle 3 is r13 = 1.75 cm. a. What is the electric potential energy of the four-particle system? b. If the particles are released from rest, what will happen to the system? In particular, what will happen to the systems kinetic energy?arrow_forwardA charged particle is moved in a uniform electric field between two points, A and B, as depicted in Figure P26.65. Does the change in the electric potential or the change in the electric potential energy of the particle depend on the sign of the charged particle? Consider the movement of the particle from A to B, and vice versa, and determine the signs of the electric potential and the electric potential energy in each possible scenario.arrow_forward
- (a) A sphere has a surface uniformly charged with 1.00 C. At what distance from its center is the potential 5.00 MV? (b) What does your answer imply about the practical aspect of isolating such a large charge?arrow_forwardTwo 5.00-nC charged particles are in a uniform electric field with a magnitude of 625 N/C. Each of the particles is moved from point A to point B along two different paths, labeled in Figure P26.65. a. Given the dimensions in the figure, what is the change in the electric potential experienced by the particle that is moved along path 1 (black)? b. What is the change in the electric potential experienced by the particle that is moved along path 2 (red)? c. Is there a path between the points A and B for which the change in the electric potential is different from your answers to parts (a) and (b)? Explain. FIGURE P26.65 Problems 65, 66, and 67.arrow_forwardA Start with V=2k[(R2+x2)x] for the electric potential of a disk of radius R and excess surface charge density at a position x from the center of a disk on its axis, and derive an expression for the electric field at this position. Hint: See Example 24.6 (page 732) to check your answer.arrow_forward
- Four charged particles are at rest at the corners of a square (Fig. P26.14). The net charges are q1 = q2 = 2.65 C and q3 = q4 = 5.15 C. The distance between particle 1 and particle 3 is r13 = 1.75 cm. a. What is the electric potential energy of the four-particle system? b. If the particles are released from rest, what will happen to the system? In particular, what will happen to the systems kinetic energy as their separations become infinite? FIGURE P26.14 Problems 14, 15, and 16.arrow_forwardFigure P26.68 shows three small spheres with identical charges of 3.00 nC placed at the vertices of an equilateral triangle with side d = 2.50 cm. a. Is the electric potential due to the three spheres zero anywhere in the plane that contains the triangle, other than at infinity? b. What is the electric potential at the location of each sphere due to the other two spheres? FIGURE P26.68arrow_forwardA uniformly charged ring with total charge q = 3.00 C and radius R = 10.0 cm is placed with its center at the origin and oriented in the xy plane. What is the difference between the electric potential at the origin and the electric potential at the point (0, 0, 30.0 cm)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY