Concept explainers
Il Two 10-cm-diameter electrodes 0.50 cm apart form a parallel- plate capacitor. The electrodes are attached by metal wires to the terminals of a 15 V battery. What are the charge on each electrode,
the electric field strength inside the capacitor, and the potential difference between the electrodes
a. While the capacitor is attached to the battery?
b. After insulating handles are used to pull the electrodes away
from each other until they are 1.0 cm apart? The electrodes
remain connected to the battery during this process.
c. After the original electrodes (not the modified electrodes of
part b) are expanded until they are 20 cm in diameter while
remaining connected to the battery?
Trending nowThis is a popular solution!
Chapter 25 Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
- A parallel-plate capacitor has charge of magnitude 9.00F on each plate and capacitance 3.00F when there is air between the plates. The plates are separated by 2.00 mm. With the charge on the plates kept constant, a dielectric with =5 . is inserted between the plates, completely filling the volume between the plates, (a) What is the potential difference between the plates of the capacitor, before and after the dielectric has been inserted? (b) What is the electrical field at the point midway between the plates before and after the dielectric is inserted?arrow_forwarda parallel-plate capacitor with area 0.200 m2 and plate separation of 3.00 mm is connected to a 6.00-V battery. (a) What is the capacitance? (b) How much charge is stored on the plates? (c) What is the electric field between the plates? (d) Find the magnitude of the charge density on each plate. (e) Without disconnecting the battery, the plates are moved farther apart. Qualitatively, what happens to each of the previous answers?arrow_forward(a) What is the capacitance of a parallel plate capacitor having plates of area 1.50 m2 that are separated by 0.0200 mm of neoprene rubber? (b) What charge does it hold when 9.00 V is applied to it?arrow_forward
- (a) How much charge can be placed 011 a capacitor with air between the plates before it breaks down if the area of each plate is 5.00 cm2? (b) What If? Find the maximum charge if polystyrene is used between the plates instead of air.arrow_forwardA research Vail de Graaff generator has a 2.00-m- diameter metal sphere with a charge of 5.00 mC on it. (a) What is the potential near its surface? (b) At what distance from its center is the potential 1.00 MV? (c) An oxygen atom with three missing electrons is released near the Van de Graaff generator. What is its energy in MeV when the atom is at the distance found in part b?arrow_forward(a) What is the capacitance of a parallel-plate capacitor with plates of area 1.50 m that are separated by 0.0200 mm of neoprene rubber? (b) What charge does it hold when 9.00 V is applied to it?arrow_forward
- When a 360-nF air capacitor is connected to a power supply, the energy stored in the capacitor is 18.5J . While the capacitor is connected to the power supply, a slab of dielectric is insetted that completely fills die space between the plates. This increases the stored energy by 23.2J . (a) What is the potential difference between the capacitor plates? (b) What is die dielectric constant of the slab?arrow_forwardUnreasonable Results (a) A certain parallel plate capacitor has plates of area 4.00 m2 separated by 0.0100 mm of nylon, and stores 0.170 C of charge. What is the applied voltage? (b) What is unreasonable about this result? (c) Which assumptions are responsible or inconsistent?arrow_forward(a) A sphere has a surface uniformly charged with 1.00 C. At what distance from its center is the potential 5.00 MV? (b) What does your answer imply about the practical aspect of isolating such a large charge?arrow_forward
- The electric field strength between two parallel conducting plates separated by 4.00 cm is 7.50 104 V/m. (a) What is the potential difference between the plates? (b) The plate with the lowest potential is taken to be at zero volts. What is the potential 1.00 cm from that plate (and 3.00 cm from the other)?arrow_forwardSome cell walls in the human body have a layer of negative charge on the inside surface. Suppose that the surface charge densities are 0.50103C/m2 the cell wall is 5.0109m thick, and the cell wall material has a dielectric constant of = 5.4. (a) Find the magnitude of the electric field in the wall between two charge layers, (b) Find the potential difference between the inside and the outside of the cell. Which is at higher potential? (c) A typical cell in die human body has volume 1016m3 . Estimate the total electrical field energy stored in the wall of a cell of this size when assuming that the cell is spherical. (Hint: Calculate the volume of the cell wall.)arrow_forwardA spherical balloon contains a positively charged object at its center. (i) As the balloon is inflated to a greater volume while the charged object remains at the center, does the electric potential at the surface of the balloon (a) increase, (b) decrease, or (c) remain the same? (ii) Does the electric flux through the surface of the balloon (a) increase, (b) decrease, or (c) remain the same?arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning