![Introduction to Statistics and Data Analysis](https://www.bartleby.com/isbn_cover_images/9781305750999/9781305750999_largeCoverImage.gif)
Concept explainers
The article “Effects of Too Much TV Can Be Undone” (USA Today, October 1, 2007) included the following paragraph:
Researchers at Johns Hopkins Bloomberg School of Public Health report that it’s not only how many hours children spend in front of the TV, but at what age they watch that matters. They analyzed data from a national survey in which parents of 2707 children were interviewed first when the children were 30-33 months old and again when they were
- a. Is the study described an observational study or an experiment?
- b. The article says that data from a sample of 2707 parents were used in the study. What other information about the sample would you want in order to evaluate the study?
- c. The actual paper referred to in the USA Today article was “Children’s Television Exposure and Behavioral and Social Outcomes at 5.5 years: Does Timing of Exposure Matter?” (Pediatrics [2007]: 762-769). The paper describes the sample as follows:
The study sample included 2707 children whose mothers completed telephone interviews at both 30 to 33 months and 5.5 years and reported television exposure at both time points. Of those completing both interviewers, 41 children (1%) were excluded because of missing data on television exposure at one or both time points. Compared with those enrolled in the HS clinical trial, parents in the study sample were disproportionately older, white, more educated, and married.
The “HS clinical trial” referred to in the excerpt from the paper was a nationally representative sample used in the Healthy Steps for Young Children national evaluation. Based on the above description of the study sample, do you think that it is reasonable to regard the sample as representative of parents of all children at age 5.5 years? Explain.
- d. The USA Today article also includes the following summary paragraph:
The study did not examine what the children watched and can’t show TV was the cause of later problems, but it does “tell parents that even if kids are watching TV early in life, and they stop, it could reduce the risk for behavioral and social problems later,” Mistry says.
What potentially confounding variable is identified in this passage?
- e. The passage in Part (d) says that the study cannot show that TV was the cause of later problems. Is the quote from Kamila Mistry (one of the study authors) in the passage consistent with the statement about cause? Explain.
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Chapter 2 Solutions
Introduction to Statistics and Data Analysis
- Are the t-statistics here greater than 1.96? What do you conclude? colgPA= 1.39+0.412 hsGPA (.33) (0.094) Find the P valuearrow_forwardA poll before the elections showed that in a given sample 79% of people vote for candidate C. How many people should be interviewed so that the pollsters can be 99% sure that from 75% to 83% of the population will vote for candidate C? Round your answer to the whole number.arrow_forwardSuppose a random sample of 459 married couples found that 307 had two or more personality preferences in common. In another random sample of 471 married couples, it was found that only 31 had no preferences in common. Let p1 be the population proportion of all married couples who have two or more personality preferences in common. Let p2 be the population proportion of all married couples who have no personality preferences in common. Find a95% confidence interval for . Round your answer to three decimal places.arrow_forward
- A history teacher interviewed a random sample of 80 students about their preferences in learning activities outside of school and whether they are considering watching a historical movie at the cinema. 69 answered that they would like to go to the cinema. Let p represent the proportion of students who want to watch a historical movie. Determine the maximal margin of error. Use α = 0.05. Round your answer to three decimal places. arrow_forwardA random sample of medical files is used to estimate the proportion p of all people who have blood type B. If you have no preliminary estimate for p, how many medical files should you include in a random sample in order to be 99% sure that the point estimate will be within a distance of 0.07 from p? Round your answer to the next higher whole number.arrow_forwardA clinical study is designed to assess the average length of hospital stay of patients who underwent surgery. A preliminary study of a random sample of 70 surgery patients’ records showed that the standard deviation of the lengths of stay of all surgery patients is 7.5 days. How large should a sample to estimate the desired mean to within 1 day at 95% confidence? Round your answer to the whole number.arrow_forward
- A clinical study is designed to assess the average length of hospital stay of patients who underwent surgery. A preliminary study of a random sample of 70 surgery patients’ records showed that the standard deviation of the lengths of stay of all surgery patients is 7.5 days. How large should a sample to estimate the desired mean to within 1 day at 95% confidence? Round your answer to the whole number.arrow_forwardIn the experiment a sample of subjects is drawn of people who have an elbow surgery. Each of the people included in the sample was interviewed about their health status and measurements were taken before and after surgery. Are the measurements before and after the operation independent or dependent samples?arrow_forwardiid 1. The CLT provides an approximate sampling distribution for the arithmetic average Ỹ of a random sample Y₁, . . ., Yn f(y). The parameters of the approximate sampling distribution depend on the mean and variance of the underlying random variables (i.e., the population mean and variance). The approximation can be written to emphasize this, using the expec- tation and variance of one of the random variables in the sample instead of the parameters μ, 02: YNEY, · (1 (EY,, varyi n For the following population distributions f, write the approximate distribution of the sample mean. (a) Exponential with rate ẞ: f(y) = ß exp{−ßy} 1 (b) Chi-square with degrees of freedom: f(y) = ( 4 ) 2 y = exp { — ½/ } г( (c) Poisson with rate λ: P(Y = y) = exp(-\} > y! y²arrow_forward
- 2. Let Y₁,……., Y be a random sample with common mean μ and common variance σ². Use the CLT to write an expression approximating the CDF P(Ỹ ≤ x) in terms of µ, σ² and n, and the standard normal CDF Fz(·).arrow_forwardmatharrow_forwardCompute the median of the following data. 32, 41, 36, 42, 29, 30, 40, 22, 25, 37arrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
![Text book image](https://www.bartleby.com/isbn_cover_images/9780079039897/9780079039897_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781680331141/9781680331141_smallCoverImage.jpg)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780547587776/9780547587776_smallCoverImage.jpg)