PHYS 212 FOR SCI+ENG W/MAST PHYS >ICP<
1st Edition
ISBN: 9781323834831
Author: Knight
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 25, Problem 51EAP
What is the escape speed of an electron launched from the
surface of a 1.0-cm-diameter glass sphere that has been charged
to 10 nC?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A research Van de Graaff generator has a 1.90 m diameter metal sphere with a charge of 56.0 µC on it.
An oxygen atom with three missing electrons is released near the Van de Graaff generator. What is its kinetic energy in keV at this distance?
An initially neutral conducting sphere has a radius R = 0.45 m. Electrons are fired towards the sphere with an initial speed of v = 4 × 106 m/s. Electrons striking the surface remain on the sphere and a net negative charge accumulates over time. Assume the electrons are fired far from the sphere.
How many electrons will be deposited on the sphere before they no longer reach the surface?
An electron is launched from the surface of a charged sphere of diameter 5.90 cm. If the sphere has been charged to 9.90 nC what is the escape velocity of the electron?
1.23×107 m/s 3.26×107 m/s 7.75×107 m/s 8.10×1012 m/s
Chapter 25 Solutions
PHYS 212 FOR SCI+ENG W/MAST PHYS >ICP<
Ch. 25 - a. Charge q1is distance r from a positive point...Ch. 25 - FIGURE Q25.2 shows the potential energy of a...Ch. 25 - An electron moves along the trajectory of FIGURE...Ch. 25 - Two protons are launched with the same speed from...Ch. 25 - Rank in order, from most positive to most...Ch. 25 - FIGURE Q25.6 shows the electric potential along...Ch. 25 - A capacitor with plates separated by distance d is...Ch. 25 - Prob. 8CQCh. 25 - FIGURE Q25.9 shows two points inside a capacitor....Ch. 25 - FIGURE Q25.10 shows two points near a positive...
Ch. 25 - ll. FIGURE Q25.11 shows three points near two...Ch. 25 - Reproduce FIGURE Q25.12 on your paper. Then draw a...Ch. 25 - I. The electric field strength is 20,000 N/C...Ch. 25 - The electric field strength is 50,000 N/C inside a...Ch. 25 - A proton is released from rest at the positive...Ch. 25 - A proton is released from rest at the positive...Ch. 25 - Prob. 5EAPCh. 25 - What is the electric potential energy of the group...Ch. 25 - What is the electric potential energy of the group...Ch. 25 - Two positive point charges are 5.0 cm apart. If...Ch. 25 - A water molecule perpendicular to an electric...Ch. 25 - FIGURE EX25.10 shows the potential energy of an...Ch. 25 - What is the speed of a proton that has been...Ch. 25 - I What is the speed of an electron that has been...Ch. 25 - What potential difference is needed to accelerate...Ch. 25 - Prob. 14EAPCh. 25 - A proton with an initial speed of 800,000 m/s is...Ch. 25 - Prob. 16EAPCh. 25 - Prob. 17EAPCh. 25 - In proton-beam therapy, a higher-energy beam of...Ch. 25 - Prob. 19EAPCh. 25 - Prob. 20EAPCh. 25 - Prob. 21EAPCh. 25 - Prob. 22EAPCh. 25 - Prob. 23EAPCh. 25 - Prob. 24EAPCh. 25 - Two 2.0-cm-diameter disks spaced 2.0 mm apart form...Ch. 25 - In FIGURE EX25.26, a proton is fired with a speed...Ch. 25 - Prob. 27EAPCh. 25 - Prob. 28EAPCh. 25 - Prob. 29EAPCh. 25 - Prob. 30EAPCh. 25 - Prob. 31EAPCh. 25 - Prob. 32EAPCh. 25 - Prob. 33EAPCh. 25 - Prob. 34EAPCh. 25 - Prob. 35EAPCh. 25 - A 5.0-cm-diamtere metal ball has a surface charge...Ch. 25 - Prob. 37EAPCh. 25 - Prob. 38EAPCh. 25 - Prob. 39EAPCh. 25 - Prob. 40EAPCh. 25 - Prob. 41EAPCh. 25 - The four 1.0 g sphere shown in FIGURE P25.42 are...Ch. 25 - A proton’s speed as it passes point A is 50,000...Ch. 25 - Prob. 44EAPCh. 25 - Prob. 45EAPCh. 25 - Prob. 46EAPCh. 25 - Prob. 47EAPCh. 25 - Prob. 48EAPCh. 25 - Prob. 49EAPCh. 25 - Prob. 50EAPCh. 25 - What is the escape speed of an electron launched...Ch. 25 - Prob. 52EAPCh. 25 - Prob. 53EAPCh. 25 - Il A 2.0-mm-diameter glass bead is positively...Ch. 25 - Prob. 55EAPCh. 25 - Il A proton is fired from far away toward the...Ch. 25 - Prob. 57EAPCh. 25 - Prob. 58EAPCh. 25 - Il One form of nuclear radiation, beta decay,...Ch. 25 - Il Two 10-cm-diameterelectrodes 0.50 cm a part...Ch. 25 - Il Two 10-cm-diameter electrodes 0.50 cm apart...Ch. 25 - Il Electrodes of area A are spaced distance d...Ch. 25 - Prob. 63EAPCh. 25 - Il Two spherical drops of mercury each have a...Ch. 25 - Prob. 65EAPCh. 25 - Il FIGURE P25.66 shows two uniformly charged...Ch. 25 - Prob. 67EAPCh. 25 - Il The arrangement of charges shown in FIGURE...Ch. 25 - Il FIGURE P25.69 shows a thin rod of length L and...Ch. 25 - Il FIGURE P25.69 shows a thin rod of length L and...Ch. 25 - I FIGURE P25.71 shows a thin rod with charge Q...Ch. 25 - Prob. 72EAPCh. 25 - Prob. 73EAPCh. 25 - Prob. 74EAPCh. 25 - Prob. 75EAPCh. 25 - Prob. 76EAPCh. 25 - Prob. 77EAPCh. 25 - Il A proton and an alpha particle (q = +2e, m = 4...Ch. 25 - Ill Bead A has a mass of 15 g and a charge of —5.0...Ch. 25 - Il Two 2.0-mm-diameter beads, C and D, are 10 mm...Ch. 25 - Il A thin rod of length L and total charge Q has...Ch. 25 - Il A hollow cylindrical shell of length L and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Four balls, each with mass m, are connected by four nonconducting strings to form a square with side a as shown in Figure P25.74. The assembly is placed on a nonconducting. frictionless. horizontal surface. Balls 1 and 2 each have charge q, and balls 3 and 4 are uncharged. After the string connecting halls 1 and 2 is cut, what is the maximum speed of balls 3 and 4?arrow_forwardA particle with charge 1.60 1019 C enters midway between two charged plates, one positive and the other negative. The initial velocity of the particle is parallel to the plates and along the midline between them (Fig. P26.48). A potential difference of 300.0 V is maintained between the two charged plates. If the lengths of the plates are 10.0 cm and they are separated by 2.00 cm, find the greatest initial velocity for which the particle will not be able to exit the region between the plates. The mass of the particle is 12.0 1024 kg. FIGURE P26.48arrow_forwardTwo 5.00-nC charged particles are in a uniform electric field with a magnitude of 625 N/C. Each of the particles is moved from point A to point B along two different paths, labeled in Figure P26.65. a. Given the dimensions in the figure, what is the change in the electric potential experienced by the particle that is moved along path 1 (black)? b. What is the change in the electric potential experienced by the particle that is moved along path 2 (red)? c. Is there a path between the points A and B for which the change in the electric potential is different from your answers to parts (a) and (b)? Explain. FIGURE P26.65 Problems 65, 66, and 67.arrow_forward
- Lightning can be studied with a Van de Graaff generator, which consists of a spherical dome on which charge is continuously deposited by a moving belt. Charge can be added until the electric field at the surface of the dome becomes equal to the dielectric strength of air. Any more charge leaks off in sparks as shown in Figure P20.67. Assume the dome has a diameter of 30.0 cm and is surrounded by dry air with a breakdown electric field of 3.00 106 V/m. (a) What is the maximum potential of the dome? (b) What is the maximum charge on the dome? Figure P20.67 David Evison/Shutterstock.comarrow_forward(a) Find the potential difference VB required to stop an electron (called a slopping potential) moving with an initial speed of 2.85 107 m/s. (b) Would a proton traveling at the same speed require a greater or lesser magnitude potential difference? Explain. (c) Find a symbolic expression for the ratio of the proton stopping potential and the electron stopping potential, Vp/Ve. The answer should be in terms of the proton mass mp and electron mass me.arrow_forwardThree charged particles are arranged on corners of a square as shown in Figure OQ19.14, with charge Q on both the particle at the upper left corner and the particle at the lower right corner and with charge +2Q on the particle at the lower left corner. (i) What is the direction of the electric field at the upper right corner, which is a point in empty space? (a) It is upward and to the right. (b) It is straight to the right. (c) It is straight downward. (d) It is downward and to the left. (e) It is perpendicular to the plane of the picture and outward. (ii) Suppose the +2 Q charge at the lower left corner is removed. Then does the magnitude of the field at the upper right corner (a) become larger, (b) become smaller, (c) stay the same, or (d) change unpredictably? Figure OQ19.14arrow_forward
- A particle with charge +q is at the origin. A particle with charge 2q is at x = 2.00 m on the x axis. (a) For what finite value(s) of x is the electric field zero? (b) For what finite value(s) of x is the electric potential zero?arrow_forwardA proton is fired from very far away directly at a fixed particle with charge q = 1.28 1018 C. If the initial speed of the proton is 2.4 105 m/s, what is its distance of closest approach to the fixed particle? The mass of a proton is 1.67 1027 kg.arrow_forwardProblems 72, 73, and 74 are grouped. 72. A Figure P26.72 shows a source consisting of two identical parallel disks of radius R. The x axis runs through the center of each disk. Each disk carries an excess charge uniformly distributed on its surface. The disk on the left has a total positive charge Q, and the disk on the right has a total negative charge Q. The distance between the disks is 3R, and point A is 2R from the positively charged disk. Find an expression for the electric potential at point A between the disks on the x axis. Approximate any square roots to three significant figures. FIGURE P26.72 Problems 72, 73, and 74.arrow_forward
- An election enters a region between two large parallel plates made of aluminum separated by a distance of 2.0 cm and kept at a potential difference of 200 V. The electron enters through a small hole in the negative plate and moves toward the positive plate. At the time the electron is near the negative plate, its speed is 4.0103 m/s. Assume the electric field between the plates to be uniform, and find the speed of electron at (a) 0.10 cm, (b) 0.50 cm, (c) 1.0 cm, and (d) 1.5 cm from the negative plate, and (e) immediately before it hits the positive plate.arrow_forwardLightning can be studied with a Van de Graaff generator, which consists of a spherical dome on which charge is continuously deposited by a moving belt. Charge can be added until the electric field at the surface of the dome becomes equal to the dielectric strength of air. Any more charge leaks off in sparks as shown in Figure P25.52. Assume the dome has a diameter of 30.0 cm and is surrounded by dry air with a "breakdown" electric field of 3.00 106 V/m. (a) What is the maximum potential of the dome? (b) What is the maximum charge on the dome?arrow_forwardGiven two particles with 2.00-C charges as shown in Figure P20.9 and a particle with charge q = 1.28 1018 C at the origin, (a) what is the net force exerted by the two 2.00-C charges on the test charge q? (b) What is the electric field at the origin due to the two 2.00-C particles? (c) What is the electric potential at the origin due to the two 2.00-C particles? Figure P20.9arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY