College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 25, Problem 37P
The objective mirror of the Hubble Space Telescope has a focal length of 57.6 meters. The planet Mars's closest approach to the earth is about 35 million miles. Use data from Appendix E to help you calculate the size of the real image of Mars formed by the Hubble's objective mirror when the planet is closest to earth.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In this experiment, the distances are p = xL - xO and q = xS - xL. They satisfy the thin-lens equation, when the image is focused on the screen:
1/p+1/q=1/f
If you place the screen at a different position, you get a blurry image.
The three objects are at the following three positions, and the image is focused on the screen. Calculate the focal length of the lens, f, in mm.
xL = 316 mm
xO = 165 mm
xS = 508 mm
A geologist is examining rock samples with a diverging lens. The lens has a focal length of magnitude 23.0 cm. The lens is always held between the geologist's eye and the object under study. However, the distance between the lens and the object is different for each object that the geologist observes.
Determine the image location and magnification for each of the following three objects. In addition, determine whether the image is real or virtual, whether it is upright or inverted, and whether it makes the object appear larger or smaller than actual size.
(a)
The object lies 46.0 cm behind the lens. Determine the image location. (Enter the magnitude in cm.)
q=
Determine the magnification.
M=
Select all of the following that apply to the image formed in part (a).
Real
Virtual
Upright
Inverted
Enlarged
Shrunken
b) The object lies 23.0 cm behind the lens. Determine the image location. (Enter the magnitude in cm.)
q =
Determine the magnification.
M =
Select all of the following…
An object is placed 40 cm from a converging lens with a focal length of 20 cm. The image formed by this lens becomes the object for a second diverging lens with a focal length of −15 cm. The distance between the two lenses is 50 cm. Calculate the final image distance formed by this two-lens system. Draw a diagram of the optical system.
Chapter 25 Solutions
College Physics (10th Edition)
Ch. 25 - Prob. 1CQCh. 25 - A diver proposed using a clear plastic bag full of...Ch. 25 - The human eye is often compared to a camera. In...Ch. 25 - If the sensor array of a digital camera is placed...Ch. 25 - There have been reports of round fishbowls...Ch. 25 - Since a refracting telescope and a compound...Ch. 25 - You are selecting a converging lens for a...Ch. 25 - While choosing between two refracting astronomical...Ch. 25 - When choosing between two refracting astronomical...Ch. 25 - Youve entered a survival contest that will include...
Ch. 25 - If a person is severely nearsighted, can the...Ch. 25 - Ads for amateur telescopes sometimes contain...Ch. 25 - The focusing mechanism of the human eye most...Ch. 25 - Which of the following statements are true about...Ch. 25 - If, without changing anything else, we double the...Ch. 25 - If a person's eyeball is 2.7 cm deep instead of...Ch. 25 - Which of the following statements are true about...Ch. 25 - If a camera lens gives the proper exposure for a...Ch. 25 - Which of the following operations would increase...Ch. 25 - Which of the following statements are true about a...Ch. 25 - A camera is focusing on an animal. As the creature...Ch. 25 - Your eye is focusing on a person As he walks...Ch. 25 - An astronomical telescope is made with an...Ch. 25 - A simple magnifying glass produces a A. real...Ch. 25 - The focal length of an f/4 camera lens is 300 mm....Ch. 25 - A camera has a lens with an aperture diameter of...Ch. 25 - (a) A small refracting telescope designed for...Ch. 25 - A 135 mm telephoto lens for a 35 mm camera has...Ch. 25 - A camera lens has a focal length of 200 mm. How...Ch. 25 - A camera is focused on an object that is 1.2 m...Ch. 25 - A certain digital camera having a lens with focal...Ch. 25 - Your digital camera has a lens with a 50 mm focal...Ch. 25 - You want to take a full-length photo of your...Ch. 25 - Zoom lens. A zoom lens is a lens that varies in...Ch. 25 - The cornea as a thin lens. Measurements on the...Ch. 25 - Range of the focal length of the eye. We can model...Ch. 25 - A 40-year-old optometry patient focuses on a...Ch. 25 - Crystalline lens of the eye. The crystalline lens...Ch. 25 - Contact lenses. Contact lenses are placed right on...Ch. 25 - Ordinary eyeglasses. Ordinary glasses are worn in...Ch. 25 - A person can see clearly up close, but cannot...Ch. 25 - In one form of cataract surgery the person's...Ch. 25 - Bifocals. A person can focus clearly only on...Ch. 25 - A student's far point is at 17.0 cm. and she needs...Ch. 25 - (a) Where is the near point of an eye for which a...Ch. 25 - Corrective lenses. Determine the power of the...Ch. 25 - You want to view an insect 2.00 mm in length...Ch. 25 - A simple magnifier for viewing postage stamps and...Ch. 25 - A thin lens with a focal length of 6.00 cm is used...Ch. 25 - || The focal length of a simple magnifier is 8.00...Ch. 25 - A microscope has an objective lens with a focal...Ch. 25 - A compound microscope has an objective lens of...Ch. 25 - An insect 1.2 mm tall is placed 1.0 mm beyond the...Ch. 25 - The objective lens and the eyepiece of a...Ch. 25 - The focal length of the eyepiece of a certain...Ch. 25 - A certain microscope is provided with objectives...Ch. 25 - Resolution of a microscope. The image formed by a...Ch. 25 - A refracting telescope has an objective lens of...Ch. 25 - The eyepiece of a refracting astronomical...Ch. 25 - Galileos telescopes, I. While Galileo did not...Ch. 25 - The objective mirror of the Hubble Space Telescope...Ch. 25 - The largest refracting telescope in the world is...Ch. 25 - A photographer takes a photograph of a Boeing 747...Ch. 25 - Curvature of the cornea. In a simplified model of...Ch. 25 - A nearsighted eye. A certain very nearsighted...Ch. 25 - You are examining a flea with a converging lens...Ch. 25 - Physician, heal thyself! (a) Experimentally...Ch. 25 - Laser eye surgery. The distance from the vertex of...Ch. 25 - Its all done with mirrors. A photographer standing...Ch. 25 - An amateur photographer purchases a vintage camera...Ch. 25 - A person with a digital camera uses a lens of...Ch. 25 - A microscope with an objective of focal length...Ch. 25 - A person with a near point of 85 cm, but excellent...Ch. 25 - A telescope is constructed from two lenses with...Ch. 25 - Galileos telescopes, II. The characteristics that...Ch. 25 - A frog can see an insect clearly at a distance of...Ch. 25 - Amphibian vision. The eyes of amphibians such as...Ch. 25 - Given that frogs are nearsighted in air, what is...Ch. 25 - To determine whether a frog can judge distance by...
Additional Science Textbook Solutions
Find more solutions based on key concepts
In SI units, speeds are measured in meters per second (m/s). But, depending on where you live, you’re probably ...
University Physics Volume 1
Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams, show that the dot product and cross produc...
Introduction to Electrodynamics
Whether on increasing the ejection speed from 12 km/s to 13 km/s change observed in the residual speed by more ...
Physics (5th Edition)
26.3-26.6 Simultaneity, Time Dilation, Length Contraction, and Spacetime Diagrams ** Explain why the length of ...
College Physics
What is the volume of one mole of air, at room temperature and 1 atm pressure?
An Introduction to Thermal Physics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The radius of curvature of the left-hand face of a flint glass biconvex lens (n = 1.60) has a magnitude of 8.00 cm, and the radius of curvature of the right-hand face has a magnitude of 11.0 cm. The incident surface of a biconvex lens is convex regardless of which side is the incident side. What is the focal length of the lens if light is incident on the lens from the left?arrow_forward7arrow_forwardAn archaeologist is examining artifacts with a diverging lens. The lens has a focal length of magnitude 23.8 cm. The lens is always held between the archaeologist's eye and the object under study. However, the distance between the lens and the object is different for each object that the archaeologist observes. Determine the image location and magnification for each of the following three objects. In addition, determine whether the image is real or virtual, whether it is upright or inverted, and whether it makes the object appear larger or smaller than actual size. (a) The object lies 47.6 cm behind the lens. Determine the image location. (Enter the magnitude in cm.) |q| = cm Determine the magnification. M = Select all of the following that apply to the image formed in part (a). realvirtualuprightinvertedenlargedshrunken (b) The object lies 23.8 cm behind the lens. Determine the image location. (Enter the magnitude in cm.) |q| = cm Determine the magnification. M =…arrow_forward
- An optician is designing a contact lens. The material has is an index of refraction of 1.60. In order to yield the prescribed focal length, the optician specifies the following dimensions: inner radius of curvature = +2.56 cm outer radius of curvature = +2.10 cm where the inner radius of curvature describes the surface that touches the eye, and the outer radius of curvature describes the surface that first interacts with incoming light. What is the focal length of this contact lens (in cm)?arrow_forwardChapter 34, Problem 034 SN XIncorrect. When an object is placed a distance p in front of a spherical refracting surface with radius of curvature r, the image distance is i. If the index of refraction of the surrounding material is n1, what is the index of refraction of the refracting material? State your answer in terms of the given variables. n2 = 1 1 Edit 1arrow_forwardAn optician is designing a contact lens. The material has is an index of refraction of 1.35. In order to yield the prescribed focal length, the optician specifies the following dimensions: inner radius of curvature = +2.60 cm outer radius of curvature = +2.06 cm where the inner radius of curvature describes the surface that touches the eye, and the outer radius of curvature describes the surface that first interacts with incoming light. What is the focal length of this contact lens (in cm)? answer in cmarrow_forward
- Consider two thin lenses with focal lengths f1 = 10.0 cm and f2 = −15.0 cm. The lenses are placed in contact. Calculate the equivalent focal length of the lenses. What is the image distance of an object placed 20.0 cm from the lenses? Draw a diagram of the optical system and label the relevant quantitiesarrow_forwardProblem 8: Consider the compound optical system shown in the diagram, where two thin lenses of focal lengths 7.5 cm (left lens) and 7.5 cm (right lens) are separated by a distance 45 cm. a. If an object is placed a distance do = 17.3 cm to the left of the first lens (the left one) as shown in the figure, how far to the right of that lens, in centimeters, is the image formed? b. What is the magnification of the first lens? c. What is the object distance, in centimeters, for the second lens (the right lens)? d. What is the image distance, in centimeters, for the second lens? e. What is the magnification of the second lens?arrow_forwardAn object (height = 7.7 cm) and its image are on opposite sides of a converging lens. The object is located 14.0 cm from the lens. The image is located 5.6 cm from the lens. Determine the image height (in cm). Enter the numerical part of your answer to two significant figures. Hint: Remember that the sign of the image height is significant.arrow_forward
- *** 41. A Galilean telescope is formed by intercepting the converging light from the primary lens before it forms a real image and diverging it to produce plane waves (so that the image looks like it came from infinitely far away). Light from far away is focused by a +4 D primary lens and a diverging lens of power -20 D is placed 20 cm from the primary, as shown in the diagram below. P = +4 D P2 = -20 D 20 cm a) Work through the two-lens combination to find the location of the final image. b) Is the final image erect or inverted?arrow_forwardA negative lens with a focal length of -15 cm is 25 cm from a positive lens with a focal length of +20 cm on the same asix. Parallel light from the left is incident on the negative lens. The image formed by the positive lens is 25 cm f₁= -15 cm f₂ = +20 cmarrow_forwardA student is examining various objects with a diverging lens. The lens has a focal length of magnitude 15.6 cm. The lens is always held between the student's eye and the object under study. However, the distance between the lens and the object is different for each object that the student observes. Determine the image location and magnification for each of the following three objects. In addition, determine whether the image is real or virtual, whether it is upright or inverted, and whether it makes the object appear larger or smaller than actual size. (a) The object lies 31.2 cm behind the lens. Determine the image location. (Enter the magnitude in cm.) |g| = Determine the magnification. M = Select all of the following that apply to the image formed in part (a). Oreal O virtual O upright O inverted O enlarged Oshrunken cm (b) The object lies 15.6 cm behind the lens. Determine the image location. (Enter the magnitude in cm.) |q| = M = Determine the magnification. cm O virtual O upright…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY