College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 25, Problem 9MCP
A camera is focusing on an animal. As the creature moves closer to the lens, what must be done to keep the animal in focus?
- A. The lens must be moved closer to the film (or light sensors in a digital camera).
- B. The lens must be moved farther from the film (or light sensors in a digital camera).
- C. The f-number of the lens must be increased.
- D. The f-number of the lens must be decreased.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Fresnel lens: You would like to design a 25 mm diameter blazed Fresnel zone plate with a first-order power of
+1.5 diopters. What is the lithography requirement (resolution required) for making this lens that is designed
for 550 nm? Express your answer in units of μm to one decimal point.
Fresnel lens: What would the power of the first diffracted order of this lens be at wavelength of 400 nm?
Express your answer in diopters to one decimal point.
Eye: A person with myopic eyes has a far point of 15 cm. What power contact lenses does she need to correct
her version to a standard far point at infinity? Give your answer in diopter to one decimal point.
Paraxial design of a field flattener. Imagine your optical system has Petzal curvature of the field with radius
p. In Module 1 of Course 1, a homework problem asked you to derive the paraxial focus shift along the axis
when a slab of glass was inserted in a converging cone of rays. Find or re-derive that result, then use it to
calculate the paraxial radius of curvature of a field flattener of refractive index n that will correct the observed
Petzval. Assume that the side of the flattener facing the image plane is plano. What is the required radius of
the plano-convex field flattener? (p written as rho )
3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \). (b) Repeat part (a) for 13 electrons.
Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.
Chapter 25 Solutions
College Physics (10th Edition)
Ch. 25 - Prob. 1CQCh. 25 - A diver proposed using a clear plastic bag full of...Ch. 25 - The human eye is often compared to a camera. In...Ch. 25 - If the sensor array of a digital camera is placed...Ch. 25 - There have been reports of round fishbowls...Ch. 25 - Since a refracting telescope and a compound...Ch. 25 - You are selecting a converging lens for a...Ch. 25 - While choosing between two refracting astronomical...Ch. 25 - When choosing between two refracting astronomical...Ch. 25 - Youve entered a survival contest that will include...
Ch. 25 - If a person is severely nearsighted, can the...Ch. 25 - Ads for amateur telescopes sometimes contain...Ch. 25 - The focusing mechanism of the human eye most...Ch. 25 - Which of the following statements are true about...Ch. 25 - If, without changing anything else, we double the...Ch. 25 - If a person's eyeball is 2.7 cm deep instead of...Ch. 25 - Which of the following statements are true about...Ch. 25 - If a camera lens gives the proper exposure for a...Ch. 25 - Which of the following operations would increase...Ch. 25 - Which of the following statements are true about a...Ch. 25 - A camera is focusing on an animal. As the creature...Ch. 25 - Your eye is focusing on a person As he walks...Ch. 25 - An astronomical telescope is made with an...Ch. 25 - A simple magnifying glass produces a A. real...Ch. 25 - The focal length of an f/4 camera lens is 300 mm....Ch. 25 - A camera has a lens with an aperture diameter of...Ch. 25 - (a) A small refracting telescope designed for...Ch. 25 - A 135 mm telephoto lens for a 35 mm camera has...Ch. 25 - A camera lens has a focal length of 200 mm. How...Ch. 25 - A camera is focused on an object that is 1.2 m...Ch. 25 - A certain digital camera having a lens with focal...Ch. 25 - Your digital camera has a lens with a 50 mm focal...Ch. 25 - You want to take a full-length photo of your...Ch. 25 - Zoom lens. A zoom lens is a lens that varies in...Ch. 25 - The cornea as a thin lens. Measurements on the...Ch. 25 - Range of the focal length of the eye. We can model...Ch. 25 - A 40-year-old optometry patient focuses on a...Ch. 25 - Crystalline lens of the eye. The crystalline lens...Ch. 25 - Contact lenses. Contact lenses are placed right on...Ch. 25 - Ordinary eyeglasses. Ordinary glasses are worn in...Ch. 25 - A person can see clearly up close, but cannot...Ch. 25 - In one form of cataract surgery the person's...Ch. 25 - Bifocals. A person can focus clearly only on...Ch. 25 - A student's far point is at 17.0 cm. and she needs...Ch. 25 - (a) Where is the near point of an eye for which a...Ch. 25 - Corrective lenses. Determine the power of the...Ch. 25 - You want to view an insect 2.00 mm in length...Ch. 25 - A simple magnifier for viewing postage stamps and...Ch. 25 - A thin lens with a focal length of 6.00 cm is used...Ch. 25 - || The focal length of a simple magnifier is 8.00...Ch. 25 - A microscope has an objective lens with a focal...Ch. 25 - A compound microscope has an objective lens of...Ch. 25 - An insect 1.2 mm tall is placed 1.0 mm beyond the...Ch. 25 - The objective lens and the eyepiece of a...Ch. 25 - The focal length of the eyepiece of a certain...Ch. 25 - A certain microscope is provided with objectives...Ch. 25 - Resolution of a microscope. The image formed by a...Ch. 25 - A refracting telescope has an objective lens of...Ch. 25 - The eyepiece of a refracting astronomical...Ch. 25 - Galileos telescopes, I. While Galileo did not...Ch. 25 - The objective mirror of the Hubble Space Telescope...Ch. 25 - The largest refracting telescope in the world is...Ch. 25 - A photographer takes a photograph of a Boeing 747...Ch. 25 - Curvature of the cornea. In a simplified model of...Ch. 25 - A nearsighted eye. A certain very nearsighted...Ch. 25 - You are examining a flea with a converging lens...Ch. 25 - Physician, heal thyself! (a) Experimentally...Ch. 25 - Laser eye surgery. The distance from the vertex of...Ch. 25 - Its all done with mirrors. A photographer standing...Ch. 25 - An amateur photographer purchases a vintage camera...Ch. 25 - A person with a digital camera uses a lens of...Ch. 25 - A microscope with an objective of focal length...Ch. 25 - A person with a near point of 85 cm, but excellent...Ch. 25 - A telescope is constructed from two lenses with...Ch. 25 - Galileos telescopes, II. The characteristics that...Ch. 25 - A frog can see an insect clearly at a distance of...Ch. 25 - Amphibian vision. The eyes of amphibians such as...Ch. 25 - Given that frogs are nearsighted in air, what is...Ch. 25 - To determine whether a frog can judge distance by...
Additional Science Textbook Solutions
Find more solutions based on key concepts
4. What five specific threats to biodiversity are described in this chapter? Provide an example of each.
Biology: Life on Earth (11th Edition)
2 Of the uterus, small intestine, spinal cord, and heart, which is/are in the dorsal body cavity?
Anatomy & Physiology (6th Edition)
How can 1H NMR distinguish between the compounds in each of the following pairs?
Organic Chemistry (8th Edition)
Albinism in humans is inherited as a simple recessive trait. For the following families, determine the genotype...
Concepts of Genetics (12th Edition)
Why are BSL-4 suits pressurized? Why not just wear tough regular suits?
Microbiology with Diseases by Body System (5th Edition)
Why do researchers identify the charophytes rather than another group of algae as the closest living relatives ...
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \). (b) Repeat part (a) for 13 electrons. Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.arrow_forwardNo chatgpt pls will upvotearrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: Incident ray at A Note: This diagram is not to scale. a Air (n = 1.00) Water (n = 1.34) 1) Determine the angle of refraction of the ray of light in the water. Barrow_forward
- Hi can u please solvearrow_forward6. Bending a lens in OpticStudio or OSLO. In either package, create a BK7 singlet lens of 10 mm semi-diameter and with 10 mm thickness. Set the wavelength to the (default) 0.55 microns and a single on-axis field point at infinite object distance. Set the image distance to 200 mm. Make the first surface the stop insure that the lens is fully filled (that is, that the entrance beam has a radius of 10 mm). Use the lens-maker's equation to calculate initial glass curvatures assuming you want a symmetric, bi-convex lens with an effective focal length of 200 mm. Get this working and examine the RMS spot size using the "Text" tab of the Spot Diagram analysis tab (OpticStudio) or the Spd command of the text widnow (OSLO). You should find the lens is far from diffraction limited, with a spot size of more than 100 microns. Now let's optimize this lens. In OpticStudio, create a default merit function optimizing on spot size.Then insert one extra line at the top of the merit function. Assign the…arrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answer .arrow_forward
- Use the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardGood explanation it sure experts solve it.arrow_forward
- No chatgpt pls will upvote Asaparrow_forwardA satellite has a mass of 100kg and is located at 2.00 x 10^6 m above the surface of the earth. a) What is the potential energy associated with the satellite at this loction? b) What is the magnitude of the gravitational force on the satellite?arrow_forwardNo chatgpt pls will upvotearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Convex and Concave Lenses; Author: Manocha Academy;https://www.youtube.com/watch?v=CJ6aB5ULqa0;License: Standard YouTube License, CC-BY