Concept explainers
(a)
The mass density of
(a)
Answer to Problem 34Q
Solution:
Mass density of radiation at the photosphere of the Sun is,
Explanation of Solution
Given data:
Temperature at the photosphere of the Sun,
Average density of matter at the photosphere of the Sun,
Formula used:
Write the expression for mass density of radiation.
Here,
Explanation:
Energy in the entire universe usually falls into two categories – matter or radiation. To calculate the weightage of matter and radiation in the energy, we find the mass density of the radiation, which is equivalent to the mass of the entire radiation divided by the volume in which that radiation is contained. If the value of mass density of the radiation comes out less than the average density of matter, then the radiation is matter-dominated, otherwise, it is radiation-dominated. Refer to the expression for mass density of radiation.
Substitute
Conclusion:
Hence, the radiation at the photosphere of the Sun is matter-dominated and value of its mass density is,
(b)
The mass density of radiation
(b)
Answer to Problem 34Q
Solution:
Mass density of radiation at the center of the Sun,
Explanation of Solution
Given data:
Temperature at the center of the Sun,
Average density of matter at the center of the Sun,
Formula used:
Write the expression for mass density of radiation.
Here,
Explanation:
As per Einstein’s law of mass-energy equivalence, that is,
Substitute
Conclusion:
Hence, the radiation at the center of the Sun is matter-dominated as the value of its mass density is,
(c)
The mass density of radiation
(c)
Answer to Problem 34Q
Solution:
Mass density of radiation at the solar corona,
Explanation of Solution
Given data:
Temperature at the corona of the Sun,
Average density of matter at the corona of the Sun,
Formula used:
Write the expression for mass density of radiation.
Here,
Explanation:
According to the mass-energy relation of Einstein,
Substitute
Conclusion:
Hence, the value of mass density of radiation at the solar corona is,
Want to see more full solutions like this?
Chapter 25 Solutions
Universe
- 19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardair is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward
- 13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forward
- Calculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forwardNo chatgpt pls will upvotearrow_forwardCan you help me solve the questions pleasearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning