Chemistry & Chemical Reactivity
Chemistry & Chemical Reactivity
10th Edition
ISBN: 9781337670418
Author: Kotz
Publisher: Cengage
bartleby

Concept explainers

Question
Book Icon
Chapter 25, Problem 30PS

(a)

Interpretation Introduction

Interpretation: Probable mode of decay of manganese-54 and the equation for this radioactive decay has to be given

Concept introduction:

Radioactive decay: It is the process in which a radioactive nucleus loses its energy by the emission of radiations namely, beta particle, alpha particle

Common particles in radioactive decay and nuclear transformations are mentioned below,

    ParticleSymbolProton11Hor11PNeutron01nElectron-10eAlphaparticle24Heor24αBetaparticle-10eor-10βPositron10e

There are various types of nuclear processes. The changes in atomic number and mass number accompanying radioactive decay are mentioned below,

TypeofDecaySymbolchargeMassChangeinatomicnumberChangeinmassnumberBeta-10eor-10β-10+1nonePositron+10e+10-1noneAlpha24Heor24α+24-2-4Gamma00γ00nonenone

(a)

Expert Solution
Check Mark

Explanation of Solution

The radioactive isotope of manganese-54 is transmuted to iron-56 along with the emission of a proton.

The equation for this radioactive decay is given below:

  M2554n+α24H12+F2656e

(b)

Interpretation Introduction

Interpretation: Probable mode of decay of silver-110 and the equation for this radioactive decay has to be given

Concept introduction:

Radioactive decay: It is the process in which a radioactive nucleus loses its energy by the emission of radiations namely, beta particle, alpha particle

Common particles in radioactive decay and nuclear transformations are mentioned below,

    ParticleSymbolProton11Hor11PNeutron01nElectron-10eAlphaparticle24Heor24αBetaparticle-10eor-10βPositron10e

There are various types of nuclear processes. The changes in atomic number and mass number accompanying radioactive decay are mentioned below,

TypeofDecaySymbolchargeMassChangeinatomicnumberChangeinmassnumberBeta-10eor-10β-10+1nonePositron+10e+10-1noneAlpha24Heor24α+24-2-4Gamma00γ00nonenone

(b)

Expert Solution
Check Mark

Explanation of Solution

The radioactive isotope of silver-110 is transmuted to cadmium-110 along with the emission of a beta particle.

The equation for this radioactive decay is given below:

  A47110gC48110d+β10.

(c)

Interpretation Introduction

Interpretation: Probable mode of decay of americium-241 and the equation for this radioactive decay has to be given

Concept introduction:

Radioactive decay: It is the process in which a radioactive nucleus loses its energy by the emission of radiations namely, beta particle, alpha particle

Common particles in radioactive decay and nuclear transformations are mentioned below,

    ParticleSymbolProton11Hor11PNeutron01nElectron-10eAlphaparticle24Heor24αBetaparticle-10eor-10βPositron10e

There are various types of nuclear processes. The changes in atomic number and mass number accompanying radioactive decay are mentioned below,

TypeofDecaySymbolchargeMassChangeinatomicnumberChangeinmassnumberBeta-10eor-10β-10+1nonePositron+10e+10-1noneAlpha24Heor24α+24-2-4Gamma00γ00nonenone

(c)

Expert Solution
Check Mark

Explanation of Solution

The radioactive isotope of americium-241 is transmuted to neptunium-237 along with the emission of an alpha particle.

The equation for this radioactive decay is given below:

  A95241mN93237p+α24.

(d)

Interpretation Introduction

Interpretation: Probable mode of decay of mercury-197m and the equation for this radioactive decay has to be given

Concept introduction:

Radioactive decay: It is the process in which a radioactive nucleus loses its energy by the emission of radiations namely, beta particle, alpha particle

Common particles in radioactive decay and nuclear transformations are mentioned below,

    ParticleSymbolProton11Hor11PNeutron01nElectron-10eAlphaparticle24Heor24αBetaparticle-10eor-10βPositron10e

There are various types of nuclear processes. The changes in atomic number and mass number accompanying radioactive decay are mentioned below,

TypeofDecaySymbolchargeMassChangeinatomicnumberChangeinmassnumberBeta-10eor-10β-10+1nonePositron+10e+10-1noneAlpha24Heor24α+24-2-4Gamma00γ00nonenone

(d)

Expert Solution
Check Mark

Explanation of Solution

The radioactive isotope mercury-197m is first converted to mercury-197. Then the radioactive isotope mercury-197 is transmuted to gold-197.

The equation for this radioactive decay is given below:

  H80197gA79197u.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
2. Platinum and other group 10 metals often act as solid phase hydrogenation catalysts for unsaturated hydrocarbons such as propylene, CH3CHCH2. In order for the reaction to be catalyzed the propylene molecules must first adsorb onto the surface. In order to completely cover the surface of a piece of platinum that has an area of 1.50 cm² with propylene, a total of 3.45 x 10¹7 molecules are needed. Determine the mass of the propylene molecules that have been absorbed onto the platinum surface.
Chem 141, Dr. Haefner 2. (a) Many main group oxides form acidic solutions when added to water. For example solid tetraphosphorous decaoxide reacts with water to produce phosphoric acid. Write a balanced chemical equation for this reaction. (b) Calcium phosphate reacts with silicon dioxide and carbon graphite at elevated temperatures to produce white phosphorous (P4) as a gas along with calcium silicate (Silcate ion is SiO3²-) and carbon monoxide. Write a balanced chemical equation for this reaction.
Problem Set 4a Chem 1411. A latex balloon is filled with a total of carbon dioxide gas so that its volume reaches 1.352 L. The balloon whose weight was originally 0.753 g, now weighs 2.538 g. How many molecules of carbon dioxide have been added to the balloon?

Chapter 25 Solutions

Chemistry & Chemical Reactivity

Ch. 25.8 - Prob. 1.2ACPCh. 25.8 - Prob. 1.3ACPCh. 25.8 - Calculate the molar mass (atomic weight) of...Ch. 25.8 - Prob. 2.1ACPCh. 25.8 - Prob. 2.2ACPCh. 25.8 - Prob. 2.3ACPCh. 25.8 - Prob. 2.4ACPCh. 25.8 - Prob. 2.5ACPCh. 25.8 - Prob. 2.6ACPCh. 25.8 - Prob. 3.1ACPCh. 25.8 - Prob. 3.2ACPCh. 25.8 - Prob. 3.3ACPCh. 25.8 - Prob. 3.4ACPCh. 25 - Prob. 1PSCh. 25 - Prob. 2PSCh. 25 - Prob. 4PSCh. 25 - Prob. 5PSCh. 25 - Prob. 6PSCh. 25 - Prob. 7PSCh. 25 - Prob. 8PSCh. 25 - Prob. 9PSCh. 25 - Prob. 10PSCh. 25 - Prob. 11PSCh. 25 - Prob. 12PSCh. 25 - Prob. 13PSCh. 25 - Prob. 14PSCh. 25 - Prob. 15PSCh. 25 - Prob. 16PSCh. 25 - Prob. 17PSCh. 25 - Prob. 18PSCh. 25 - Prob. 19PSCh. 25 - Prob. 20PSCh. 25 - Prob. 21PSCh. 25 - Prob. 22PSCh. 25 - Prob. 23PSCh. 25 - Prob. 24PSCh. 25 - Prob. 25PSCh. 25 - Prob. 26PSCh. 25 - Prob. 27PSCh. 25 - Prob. 28PSCh. 25 - Prob. 29PSCh. 25 - Prob. 30PSCh. 25 - Prob. 31PSCh. 25 - Prob. 32PSCh. 25 - Prob. 33PSCh. 25 - Prob. 34PSCh. 25 - Prob. 35PSCh. 25 - Prob. 36PSCh. 25 - Prob. 37PSCh. 25 - Prob. 38PSCh. 25 - Prob. 39PSCh. 25 - Prob. 40PSCh. 25 - Prob. 41PSCh. 25 - Prob. 42PSCh. 25 - Prob. 43PSCh. 25 - Prob. 44PSCh. 25 - Prob. 45PSCh. 25 - Prob. 46PSCh. 25 - Prob. 47PSCh. 25 - Prob. 48PSCh. 25 - Prob. 49PSCh. 25 - Prob. 50PSCh. 25 - Prob. 51PSCh. 25 - Prob. 52PSCh. 25 - Prob. 53PSCh. 25 - Prob. 54PSCh. 25 - Prob. 55PSCh. 25 - Some of the reactions explored by Ernest...Ch. 25 - Prob. 57GQCh. 25 - Prob. 58GQCh. 25 - Prob. 59GQCh. 25 - Prob. 60GQCh. 25 - Prob. 61GQCh. 25 - Prob. 62GQCh. 25 - Prob. 63GQCh. 25 - Prob. 64GQCh. 25 - Prob. 65ILCh. 25 - Prob. 66ILCh. 25 - Prob. 67ILCh. 25 - Prob. 68ILCh. 25 - Prob. 69ILCh. 25 - Prob. 70ILCh. 25 - Prob. 71SCQCh. 25 - Prob. 72SCQCh. 25 - Prob. 73SCQCh. 25 - Prob. 74SCQCh. 25 - Prob. 76SCQCh. 25 - Prob. 77SCQCh. 25 - Prob. 78SCQCh. 25 - Prob. 79SCQ
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Text book image
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Text book image
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Text book image
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Text book image
Chemistry for Today: General, Organic, and Bioche...
Chemistry
ISBN:9781305960060
Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. Hansen
Publisher:Cengage Learning