A typical small flashlight contains two batteries, each having an emf of 1.5 V, connected in series with a bulb having resistance 17 12. (a) If the internal resistance of the batteries is negligible, what power is delivered to the bulb? (b) If the batteries last for 5.0 h, what is the total energy delivered to the bulb? (c) The resistance of real batteries increases as they run down. If the initial internal resistance is negligible, what is the combined internal resistance of both batteries when the power to the bulb has decreased to half its initial value? (Assume that the resistance of the bulb is constant. Actually, it will change somewhat when the current through the filament changes, because this changes the temperature of the filament and hence the resistivity of the filament wire.)
A typical small flashlight contains two batteries, each having an emf of 1.5 V, connected in series with a bulb having resistance 17 12. (a) If the internal resistance of the batteries is negligible, what power is delivered to the bulb? (b) If the batteries last for 5.0 h, what is the total energy delivered to the bulb? (c) The resistance of real batteries increases as they run down. If the initial internal resistance is negligible, what is the combined internal resistance of both batteries when the power to the bulb has decreased to half its initial value? (Assume that the resistance of the bulb is constant. Actually, it will change somewhat when the current through the filament changes, because this changes the temperature of the filament and hence the resistivity of the filament wire.)
A typical small flashlight contains two batteries, each having an emf of 1.5 V, connected in series with a bulb having resistance 17 12. (a) If the internal resistance of the batteries is negligible, what power is delivered to the bulb? (b) If the batteries last for 5.0 h, what is the total energy delivered to the bulb? (c) The resistance of real batteries increases as they run down. If the initial internal resistance is negligible, what is the combined internal resistance of both batteries when the power to the bulb has decreased to half its initial value? (Assume that the resistance of the bulb is constant. Actually, it will change somewhat when the current through the filament changes, because this changes the temperature of the filament and hence the resistivity of the filament wire.)
3.63 • Leaping the River II. A physics professor did daredevil
stunts in his spare time. His last stunt was an attempt to jump across
a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at
53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower
than the top of the ramp. The river itself was 100 m below the ramp.
Ignore air resistance. (a) What should his speed have been at the top of
the ramp to have just made it to the edge of the far bank? (b) If his speed
was only half the value found in part (a), where did he land?
Figure P3.63
53.0°
100 m
40.0 m→
15.0 m
Please solve and answer the question correctly please. Thank you!!
You throw a small rock straight up from the edge of a highway bridge that crosses a river. The rock passes you on its way down, 5.00 s after it was thrown. What is the speed of the rock just before it reaches the water 25.0 m below the point where the rock left your hand? Ignore air resistance.
Chapter 25 Solutions
Mastering Physics with Pearson eText -- Standalone Access Card -- for University Physics with Modern Physics (14th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.