Concept explainers
A typical small flashlight contains two batteries, each having an emf of 1.5 V, connected in series with a bulb having resistance 17 12. (a) If the internal resistance of the batteries is negligible, what power is delivered to the bulb? (b) If the batteries last for 5.0 h, what is the total energy delivered to the bulb? (c) The resistance of real batteries increases as they run down. If the initial internal resistance is negligible, what is the combined internal resistance of both batteries when the power to the bulb has decreased to half its initial value? (Assume that the resistance of the bulb is constant. Actually, it will change somewhat when the current through the filament changes, because this changes the temperature of the filament and hence the resistivity of the filament wire.)
Want to see the full answer?
Check out a sample textbook solutionChapter 25 Solutions
University Physics (14th Edition)
Additional Science Textbook Solutions
Physics: Principles with Applications
College Physics
Lecture- Tutorials for Introductory Astronomy
College Physics: A Strategic Approach (4th Edition)
Cosmic Perspective Fundamentals
The Cosmic Perspective Fundamentals (2nd Edition)
- If the terminals of a battery with zero internal resistance are connected across two identical resistors in series, the total power delivered by the battery is 8.00 W. If the same battery is connected across the same resistors in parallel, what is the total power delivered by the battery? (a) 16.0 W (b) 32.0 W (c) 2.00 W (d) 4.00 W (e) none of those answersarrow_forwardA child's electronic toy is supplied by three 1.58-V alkaline cells having internal resistances of 0.0200 inseries with a 1.53-V carbon-zinc dry cell having a 0.100- internal resistance. The load resistance is 10.0 . (a) Draw a circuit diagram of the toy and itsbatteries, (b) What current flows? (c) How much power is supplied to the load? (d) What is the internal resistance of the dry cell if it goes bad, resulting in only 0.500 W being supplied to the load?arrow_forwardA 12.0-V emf automobile battery has a terminal voltage of 16.0 V when being charged by a current of 10.0 A. (a) What is the battery’s internal resistance? (b) What power is dissipated inside the battery? (c) At what rate (in °C/min ) will its temperature increase if its mass is 20.0 kg and it has a specific heat of 0.300 kcal/kg • °C, assuming no heat escapes?arrow_forward
- Consider the circuit below. The battery has an emf of = 30.00 V and an internal resistance of r = 1,00 . (a) Find the equivalent resistance of the circuit and the current out of the battery. (b) Find the current through each resistor, (c) Find die potential drop across each resistor, (d) Find the power dissipated by each resistor, (e) Find the total power supplied by the batteries.arrow_forwardExplain why R=R0(1 + a?T) for the temperature variation of the resistance R of an object is not as accurate as P=P0(1 + a?T) which gives the temperature variation of resistivity P.arrow_forwardEach of the six real batteries in the figure has an emf of 18.6 V and a resistance of 3.89 0. (a) What is the current through the (external) resistance R=3.5102? (b) What is the potential difference across each battery? (c) What is the power of each battery? (d) At what rate does each battery transfer energy to internal thermal energy? (a) Number IM (b) Number i MI (c) Number i IM (d) Number i Units A Units V Units W Units W R > <arrow_forward
- A battery with emf, & = 15 V, has a terminal voltage of 12.8 V when it is delivering 18.5 W of power to a circuit resistor with unknown resistance, R. (a) Find the resistance of the unknown resistor. R = Ω (b) What is the internal resistance of the battery? Ω r =arrow_forwardEach of the six real batteries in the figure has an emf of 18.6 V and a resistance of 3.89 0. (a) What is the current through the (external) resistance R=3.51 Q? (b) What is the potential difference across each battery? (c) What is the power of each battery? (d) At what rate does each battery transfer energy to internal thermal energy? (a) Number (b) Number (c) Number (d) Number M. P rod Units A Units V Units W Units W R >arrow_forwardIf you try and measure the voltage of a battery with a voltmeter connected in series, you won't get a completely accurate measurement because of the internal resistance of the battery. To see how large this effect is, consider trying to measure the terminal voltage of a 1.585 V alkaline cell having an internal resistance of 47 Ω by placing a 0.75 kΩ voltmeter across its terminals. Randomized Variables R = 0.75 kΩr = 47 Ω A. What current flows in A? B. Find the terminal voltage in V. C. To see how close the measured terminal voltage is to the emf (Electro Motive Force), calculate their ratio.arrow_forward
- A wire of length 1.6 m has a resistance 8 is connected to a battery of 2 volts and internal resistance 20. What is the potential gradient ? (a) 1.5 V / m (b) 0.5 V/m (c). 1 V/m (d) 2 V/marrow_forwardA resistor with resistance 31.5 Q is connected to the terminals of a voltage source. (a) Calculate the current through the resistor when the voltage is set at 7.00 V. A (b) Calculate the power dissipated by the resistor when the voltage is set at 7.00 V. W (c) If the voltage is doubled, recalculate the power. Warrow_forwardA lithium ion battery has an emf of 14.00 V but a terminal voltage of AVab = 7.00 V is measured when an 3.00 A current is drawn from the battery. How much power is dissipated as heat by the battery's internal resistance, r? Provide the solution: W a rarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College