University Physics (14th Edition)
14th Edition
ISBN: 9780133969290
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 25, Problem 25.33E
The circuit shown in Fig. E25.33 contains two batteries, each with an emf and an internal resistance, and two resistors. Find (a) the current in the circuit (magnitude and direction) and (b) the terminal voltage Vab of the 16.0-V battery.
Figure E25.33
Expert Solution & Answer
Trending nowThis is a popular solution!
Learn your wayIncludes step-by-step video
schedule05:44
Students have asked these similar questions
No chatgpt pls
No chatgpt pls
Please help by:
Use a free body diagram
Show the equations
State your assumptions
Show your steps
Box your final answer
Thanks!
Chapter 25 Solutions
University Physics (14th Edition)
Ch. 25 - The definition of resistivity ( = E/J) implies...Ch. 25 - A cylindrical rod has resistance R. If we triple...Ch. 25 - A cylindrical rod has resistivity . If we triple...Ch. 25 - Two copper wires with different diameters are...Ch. 25 - When is a 1.5-V AAA battery not actually a 1.5-V...Ch. 25 - Can the potential difference between the terminals...Ch. 25 - A rule of thumb used to determine the internal...Ch. 25 - Batteries are always labeled with their emf; for...Ch. 25 - We have seen that a coulomb is an enormous amount...Ch. 25 - Electrons in an electric circuit pass through a...
Ch. 25 - Temperature coefficients of resistivity are given...Ch. 25 - Which of the graphs in Fig. Q25.12 best...Ch. 25 - Why does an electric light bulb nearly always burn...Ch. 25 - A light bulb glows because it has resistance. The...Ch. 25 - (See Discussion Question Q25.14.) An ideal ammeter...Ch. 25 - (See Discussion Question Q25.14.) Will a light...Ch. 25 - The energy that can be extracted from a storage...Ch. 25 - Eight flashlight batteries in series have an cmf...Ch. 25 - Small aircraft often have 24-V electrical systems...Ch. 25 - Long-distance, electric-power, transmission lines...Ch. 25 - Ordinary household electric lines in North America...Ch. 25 - A fuse is a device designed to break a circuit,...Ch. 25 - High-voltage power supplies are sometimes designed...Ch. 25 - The text states that good thermal conductors are...Ch. 25 - Lightning Strikes. During lightning strikes from a...Ch. 25 - A silver wire 2.6 mm in diameter transfers a...Ch. 25 - A 5.00-A current runs through a 12-gauge copper...Ch. 25 - An 18-gauge copper wire (diameter 1.02 mm) carries...Ch. 25 - Copper has 8.5 1028 free electrons per cubic...Ch. 25 - Prob. 25.6ECh. 25 - CALC The current in a wire varies with time...Ch. 25 - Current passes through a solution of sodium...Ch. 25 - BIO Transmission of Nerve Impulses. Nerve cells...Ch. 25 - (a) At room temperature, what is the strength of...Ch. 25 - A 1.50-m cylindrical rod of diameter 0.500 cm is...Ch. 25 - A copper wire has a square cross section 2.3 mm on...Ch. 25 - Prob. 25.13ECh. 25 - Prob. 25.14ECh. 25 - A cylindrical tungsten filament 15.0 cm long with...Ch. 25 - A ductile metal wire has resistance R. What will...Ch. 25 - Prob. 25.17ECh. 25 - Prob. 25.18ECh. 25 - Prob. 25.19ECh. 25 - Prob. 25.20ECh. 25 - A current-carrying gold wire has diameter 0.84 mm....Ch. 25 - A hollow aluminum cylinder is 2.50 m long and has...Ch. 25 - Prob. 25.23ECh. 25 - A carbon resistor is to be used as a thermometer....Ch. 25 - A copper transmission cable 100 km long and 10.0...Ch. 25 - Consider the circuit shown in Fig. E25.26. The...Ch. 25 - An ideal voltmeter V is connected to a 2.0-11...Ch. 25 - An idealized ammeter is connected to a battery as...Ch. 25 - When switch S in Fig. E25.29 is open, the...Ch. 25 - The circuit shown in Fig. E25.30 contains two...Ch. 25 - In the circuit shown in Fig. E25.30, the 16.0-V...Ch. 25 - In the circuit of Fig. E25.30, the 5.0- resistor...Ch. 25 - The circuit shown in Fig. E25.33 contains two...Ch. 25 - When a resistor with resistance R is connected to...Ch. 25 - Light Bulbs. The power rating of a light bulb...Ch. 25 - If a 75-W" bulb (see Problem 25.35) is connected...Ch. 25 - European Light Bulb. In Europe the standard...Ch. 25 - A battery-powered global positioning system (GPS)...Ch. 25 - Consider the circuit of Fig. E25.30. (a) What is...Ch. 25 - BIO Electric Eels. Electric eels generate electric...Ch. 25 - BIO Treatment of Heart Failure. A heart...Ch. 25 - The battery for a certain cell phone is rated at...Ch. 25 - Prob. 25.43ECh. 25 - An idealized voltmeter is connected across the...Ch. 25 - A 25.0- bulb is connected across the terminals of...Ch. 25 - A typical small flashlight contains two batteries,...Ch. 25 - In the circuit in Fig. E25.47, find (a) the rate...Ch. 25 - A 540-W electric heater is designed to operate...Ch. 25 - Prob. 25.49ECh. 25 - In an ionic solution, a current consists of Ca2+...Ch. 25 - An electrical conductor designed to carry large...Ch. 25 - An overhead transmission cable for electrical...Ch. 25 - On your first day at work as an electrical...Ch. 25 - A 2.0-m length of wire is made by welding the end...Ch. 25 - A 3.00-m length of copper wire at 20 C has a...Ch. 25 - A heating clement made of tungsten wire is...Ch. 25 - CP BIO Struck by Lightning. Lightning strikes can...Ch. 25 - A resistor with resistance R is connected to a...Ch. 25 - CALC A material of resistivity is formed into a...Ch. 25 - CALC The region between two concentric conducting...Ch. 25 - The potential difference across the terminals of a...Ch. 25 - (a) What is the potential difference Vad in the...Ch. 25 - BIO The average bulk resistivity of the human body...Ch. 25 - BIO A person with body resistance between his...Ch. 25 - A typical cost for electrical power is 0,120 per...Ch. 25 - In the circuit shown in Fig. P25.66, R is a...Ch. 25 - A Nonideal Ammeter. Unlike the idealized ammeter...Ch. 25 - A cylindrical copper cable 1.50 km long is...Ch. 25 - CALC A 1.50-m cylinder of radius 1.10 cm is made...Ch. 25 - Compact Fluorescent Bulbs. Compact fluorescent...Ch. 25 - Prob. 25.71PCh. 25 - CP Consider the circuit shown in Fig. P25.72. The...Ch. 25 - CP Consider the circuit shown in Fig. P25.73. The...Ch. 25 - DATA An external resistor R is connected between...Ch. 25 - DATA The voltage drop Vab across each of resistors...Ch. 25 - DATA According to the U.S. National Electrical...Ch. 25 - Prob. 25.77CPCh. 25 - An external resistor with resistance R is...Ch. 25 - BIO SPIDERWEB CONDUCTIVITY. Some types of spiders...Ch. 25 - BIO SPIDERWEB CONDUCTIVITY. Some types of spiders...Ch. 25 - BIO SPIDERWEB CONDUCTIVITY. Some types of spiders...Ch. 25 - BIO SPIDERWEB CONDUCTIVITY. Some types of spiders...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Low-pressure centers are also referred to as ______, while high-pressure centers are called ______.
Applications and Investigations in Earth Science (9th Edition)
Fibrous connective tissue consists of ground substance and fibers that provide strength, support, and flexibili...
Human Biology: Concepts and Current Issues (8th Edition)
Calculate the lattice energy of CaCl2 using a Born-Haber cycle and data from Appendices F and L and Table 7.5. ...
Chemistry & Chemical Reactivity
Predict the type of reaction (if any) that occurs between each pair of substances. Write balanced molecular equ...
Introductory Chemistry (6th Edition)
a. How can aspirin be synthesized from benzene? b. Ibuprofen is the active ingredient in pain relievers such as...
Organic Chemistry (8th Edition)
Where is transitional epithelium found and what is its importance at those sites?
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Please help by: Use a free body diagram Show the equations State your assumptions Show your steps Box your final answer Thanks!arrow_forwardBy please don't use Chatgpt will upvote and give handwritten solutionarrow_forwardA collection of electric charges that share a common magnitude q (lower case) has been placed at the corners of a square, and an additional charge with magnitude Q (upper case) is located at the center of that square. The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four unique setups of charges are displayed. By moving one of the direction drawings from near the bottom to the bucket beside each of the setups, indicate the direction of the net electric force on the charge with magnitude Q, located near the center, else indicate that the magnitude of the net electric force is zero, if appropriate.arrow_forward
- A number of electric charges has been placed at distinct points along a line with separations as indicated. Two charges share a common magnitude, q (lower case), and another charge has magnitude Q(upper case). The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four different configurations of charges are shown. For each, express the net electric force on the charge with magnitude Q (upper case) as F⃗E=FE,xî where the positive x direction is towards the right. By repositioning the figures to the area on the right, rank the configurations from the most negative value to the most positive value of FE,x.arrow_forwardFor each part make sure to include sign to represent direction, with up being positive and down being negative. A ball is thrown vertically upward with a speed of 30.5 m/s. A) How high does it rise? y= B) How long does it take to reach its highest point? t= C) How long does it take the ball return to its starting point after it reaches its highest point? t= D) What is its velocity when it returns to the level from which it started? v=arrow_forwardFour point charges of equal magnitude Q = 55 nC are placed on the corners of a rectangle of sides D1 = 27 cm and D2 = 11cm. The charges on the left side of the rectangle are positive while the charges on the right side of the rectangle are negative. Use a coordinate system where the positive y-direction is up and the positive x-direction is to the right. A. Which of the following represents a free-body diagram for the charge on the lower left hand corner of the rectangle? B. Calculate the horizontal component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric : A numeric value is expected and not an expression.Fx = __________________________________________NC. Calculate the vertical component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric : A numeric value is expected and not an expression.Fy = __________________________________________ND. Calculate the magnitude of the…arrow_forward
- Point charges q1=50.0μC and q2=-35μC are placed d1=1.0m apart, as shown. A. A third charge, q3=25μC, is positioned somewhere along the line that passes through the first two charges, and the net force on q3 is zero. Which statement best describes the position of this third charge?1) Charge q3 is to the right of charge q2. 2) Charge q3 is between charges q1 and q2. 3) Charge q3 is to the left of charge q1. B. What is the distance, in meters, between charges q1 and q3? (Your response to the previous step may be used to simplify your solution.)Give numeric value.d2 = __________________________________________mC. Select option that correctly describes the change in the net force on charge q3 if the magnitude of its charge is increased.1) The magnitude of the net force on charge q3 would still be zero. 2) The effect depends upon the numeric value of charge q3. 3) The net force on charge q3 would be towards q2. 4) The net force on charge q3 would be towards q1. D. Select option that…arrow_forwardThe magnitude of the force between a pair of point charges is proportional to the product of the magnitudes of their charges and inversely proportional to the square of their separation distance. Four distinct charge-pair arrangements are presented. All charges are multiples of a common positive charge, q. All charge separations are multiples of a common length, L. Rank the four arrangements from smallest to greatest magnitude of the electric force.arrow_forwardA number of electric charges has been placed at distinct points along a line with separations as indicated. Two charges share a common magnitude, q (lower case), and another charge has magnitude Q (upper case). The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four different configurations of charges are shown. For each, express the net electric force on the charge with magnitude Q (upper case) as F⃗E=FE,xî where the positive x direction is towards the right. By repositioning the figures to the area on the right, rank the configurations from the most negative value to the most positive value of FE,x.arrow_forward
- A collection of electric charges that share a common magnitude q (lower case) has been placed at the corners of a square, and an additional charge with magnitude Q (upper case) is located at the center of that square. The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four unique setups of charges are displayed. By moving one of the direction drawings from near the bottom to the bucket beside each of the setups, indicate the direction of the net electric force on the charge with magnitude Q, located near the center, else indicate that the magnitude of the net electric force is zero, if appropriate.arrow_forwardIn Dark Souls 3 you can kill the Ancient Wyvern by dropping on its head from above it. Let’s say you jump off the ledge with an initial velocity of 3.86 mph and spend 1.72 s in the air before hitting the wyvern’s head. Assume the gravity is the same as that of Earth and upwards is the positive direction. Also, 1 mile = 1609 m. A) How high up is the the ledge you jumped from as measured from the wyvern’s head? B) What is your velocity when you hit the wyvern?arrow_forwardA conducting sphere is mounted on an insulating stand, and initially it is electrically neutral. A student wishes to induce a charge distribution similar to what is shown here. The student may connect the sphere to ground or leave it electrically isolated. The student may also place a charged insulated rod near to the sphere without touching it. Q. The diagrams below indicate different choices for whether or not to include a ground connection as well as the sign of the charge on and the placement of an insulating rod. Choose a diagram that would produce the desired charge distribution. (If there are multiple correct answers, you need to select only one of them.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
How To Solve Any Resistors In Series and Parallel Combination Circuit Problems in Physics; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=eFlJy0cPbsY;License: Standard YouTube License, CC-BY