a.
To construct: The 95% confidence interval for the proportion of students who have used drugs more than one time in a given month to stay awake.
a.
Answer to Problem 25.32E
The 95% confidence interval for the proportion of students who have used drugs more than one time in a given month to stay awake is 0.173695 to 0.227894.
Explanation of Solution
Given info:
The data shows the association between the sleep quality classification and the use of over-the-counter (OTC) or prescription (RX) stimulant medication more than once a month to help keep them awake.
Calculation:
Let
Thus, the proportion of students who have used drugs more than one time in a given month to stay awake is 0.1998.
Software procedure:
Step-by-step procedure for constructing 95% confidence interval for the given proportion is shown below:
- Click on Stat, Basic statistics and 1-proportion.
- Choose Summarized data, under Number of
events enter 174, under Number of trials enter 871. - Click on options, choose 95% confidence interval.
- Click ok.
Output using MINITAB is given below:
Conclusion:
The 95% confidence interval for the proportion of students who have used drugs more than one time in a given month to stay awake is 0.173695 to 0.227894.
b.
To find: The conditional distribution for the sleep quality of the students who have used drugs and those who haven’t.
To construct: A graph that compares the two conditional distributions.
To describe: The relationship between the students who have used drugs to stay awake and students who haven’t used drugs to stay awake.
b.
Answer to Problem 25.32E
The conditional distribution for the sleep quality of the students who have used the drugs and those who haven’t used the drugs is given below:
Sleep Quality | Conditional distributionof sleep quality for students who have used drugs | Conditional distribution of sleep quality for students who haven’t used drugs |
Optimal | 12.2 | 87.8 |
Borderline | 22.2 | 77.8 |
Poor | 25.5 | 74.5 |
Output obtained from MINITAB is given below:
The students who have consumed drugs have less amount of optimal sleep than students who haven’t consumed drugs. Thus, consuming drugs helps the students to stay awake.
Explanation of Solution
Calculation:
The conditional distribution for the sleep quality of the students who have used the drugs is calculated as follows:
The conditional distribution for the sleep quality of the students who haven’t used the drugs is calculated as follows:
The two conditional distributions are given below:
Sleep Quality | Conditional distributionof sleep quality for students who have used drugs | Conditional distribution of sleep quality for students who haven’t used drugs |
Optimal | ||
Borderline | ||
Poor |
Software procedure:
Step-by-step procedure for constructing a bar graph for comparing the two conditional distributions is given below:
- Click on Graph, select Bar Chart.
- Under Bar represent: select Values from table.
- In Two-way table select Cluster and then click ok.
- In Graph variables, enter the columns of Yes and No.
- In Row labels, select Sleep quality.
- Under Table Arrangement, select Rows are outermost categories and columns are innermost.
- Click ok.
Interpretation:
The bar graph is constructed for the conditional distributions of sleep quality for students who have used drugs and students who haven’t used the drugs.
The bars are separated into three sets; the bars to the leftmost side represent the “Optimal” sleep quality, the bars placed in the middle represent the “Borderline” sleep quality, and the bars placed to the rightmost side represent the “Poor” sleep quality.
Justification:
From the conditional distributions and the bar graph, it can be observed that students who have consumed drugs have less amount of optimal sleep than students who haven’t consumed drugs.
Thus, consuming drugs help the students to stay awake.
c.
To test: Whether students who use drugs more than one time in a month to stay awake have a difference in sleep quality than the students who don’t use drugs.
To state: The hypotheses used for testing.
To give: The P-value and the conclusion.
c.
Answer to Problem 25.32E
There is a significant difference in the sleep quality between the students who have used the drugs and the students who don’t use drugs.
The hypotheses used for testing is given below:
The P-value is 0.000.
The drugs help the students to stay awake.
Explanation of Solution
Calculation:
The claim is to test whether there is any significant difference between the sleep quality of the students who have used the drugs and students who haven’t used the drugs.
Cell frequency for using Chi-square test:
- When at most 20% of the cell frequencies are less than 5
- If all the individual frequencies are 1 or more than 1.
- All the expected frequencies must be 5 or greater than 5.
The hypotheses used for testing is given below:
Software procedure:
Step-by-step procedure for calculating the chi-square test statistic is given below:
- Click on Stat, select Tables and then click on Chi-square Test of Association.
- Select Summarized data in a two-way table.
- Under Columns containing the table: enter the columns of Optimal, Borderline and Poor.
- Under Labels for the table (optional), select Drug Usage in the Rows: box and type Sleep Quality for the Column category name.
- Under statistics, click on Chi-square test.
- Click on ok.
Output obtained from MINITAB is given below:
Thus, the test statistic is 18.504 and the P-value is 0.000.
Since all the expected frequencies are greater than 5,the usage of chi-square test is appropriate.
Conclusion:
The P-value is 0.000 and the level of significance is 0.05.
Here, the P-value is lesser than the level of significance.
Therefore, the null hypothesis is rejected.
Thus, there is strong evidence that there is a relationship between the sleep quality and drug usage.
Hence, students who have used the drugs have a low level of optimal sleep thanthe students who didn’t use the drugs. Thus, drugs help the students to stay awake.
Want to see more full solutions like this?
Chapter 25 Solutions
Loose-leaf Version for The Basic Practice of Statistics 7e & LaunchPad (Twelve Month Access)
- solve the question based on hw 1, 1.41arrow_forwardT1.4: Let ẞ(G) be the minimum size of a vertex cover, a(G) be the maximum size of an independent set and m(G) = |E(G)|. (i) Prove that if G is triangle free (no induced K3) then m(G) ≤ a(G)B(G). Hints - The neighborhood of a vertex in a triangle free graph must be independent; all edges have at least one end in a vertex cover. (ii) Show that all graphs of order n ≥ 3 and size m> [n2/4] contain a triangle. Hints - you may need to use either elementary calculus or the arithmetic-geometric mean inequality.arrow_forwardWe consider the one-period model studied in class as an example. Namely, we assumethat the current stock price is S0 = 10. At time T, the stock has either moved up toSt = 12 (with probability p = 0.6) or down towards St = 8 (with probability 1−p = 0.4).We consider a call option on this stock with maturity T and strike price K = 10. Theinterest rate on the money market is zero.As in class, we assume that you, as a customer, are willing to buy the call option on100 shares of stock for $120. The investor, who sold you the option, can adopt one of thefollowing strategies: Strategy 1: (seen in class) Buy 50 shares of stock and borrow $380. Strategy 2: Buy 55 shares of stock and borrow $430. Strategy 3: Buy 60 shares of stock and borrow $480. Strategy 4: Buy 40 shares of stock and borrow $280.(a) For each of strategies 2-4, describe the value of the investor’s portfolio at time 0,and at time T for each possible movement of the stock.(b) For each of strategies 2-4, does the investor have…arrow_forward
- Negate the following compound statement using De Morgans's laws.arrow_forwardNegate the following compound statement using De Morgans's laws.arrow_forwardQuestion 6: Negate the following compound statements, using De Morgan's laws. A) If Alberta was under water entirely then there should be no fossil of mammals.arrow_forward
- Negate the following compound statement using De Morgans's laws.arrow_forwardCharacterize (with proof) all connected graphs that contain no even cycles in terms oftheir blocks.arrow_forwardLet G be a connected graph that does not have P4 or C3 as an induced subgraph (i.e.,G is P4, C3 free). Prove that G is a complete bipartite grapharrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman