Concept explainers
(a)
Interpretation:
The structure of an example of a saturated fat is to be drawn.
Concept introduction:
Saturated fats are those in which the bond between carbon and hydrogen molecules is saturated. They consist of a single bond between them. These fats are solid at room temperature.
(a)
Answer to Problem 25.14SP
The structure of an example of a saturated fat is shown in Figure 1.
Explanation of Solution
Saturated fats are those in which the bond between carbon and hydrogen molecules is saturated. They consist of a single bond between them. These fats are solid at room temperature.
An example of a saturated fat is tristearin. It is a triglyceride with chemical formula
The structure of tristearin is shown below.
Figure 1
(b)
Interpretation:
The structure of an example of polyunsaturated oil is to be drawn.
Concept introduction:
Polyunsaturated fats are those in which the bond between carbon and hydrogen molecules is unsaturated. They consist of a double bond between them. These fats are liquid at room temperature.
(b)
Answer to Problem 25.14SP
The structure of an example of a polyunsaturated fat is shown in Figure 2.
Explanation of Solution
Polyunsaturated fats are those in which the bond between carbon and hydrogen molecules is unsaturated. They consist of a double bond between them. These fats are liquid at room temperature.
An example of a polyunsaturated fat is triolein. It is a triglyceride with chemical formula
The structure of triolein is shown below.
Figure 2
(c)
Interpretation:
The structure of an example of wax is to be drawn.
Concept introduction:
Waxes occur widely in nature and are esters of long chain fatty acids with long chain alcohols.
(c)
Answer to Problem 25.14SP
The structure of an example of a polyunsaturated fat is shown in Figure 3.
Explanation of Solution
Waxes occur widely in nature and are esters of long chain fatty acids with long chain alcohols.
An example of wax can be spermaceti. It helps animals to regulate the buoyancy for deep diving.
The structure of spermaceti is shown below.
Figure 3
(d)
Interpretation:
The structure of an example of soap is to be drawn.
Concept introduction:
The reaction of fatty acids with sodium hydroxide leads to the formation of sodium salt of fatty acid and soap is the sodium salt of a fatty acid. The carboxylate group is negatively charged and is hydrophilic in nature, whereas long hydrocarbon is hydrophobic and lipophilic in nature.
(d)
Answer to Problem 25.14SP
The structure of an example of soap is shown in Figure 4.
Explanation of Solution
The reaction of fatty acids with sodium hydroxide leads to the formation of sodium salt of fatty acid and soap is the sodium salt of a fatty acid. The carboxylate group is negatively charged and is hydrophilic in nature, whereas long hydrocarbon is hydrophobic and lipophilic in nature.
An example of soap is sodium stearate. The structure of sodium stearate is shown below.
Figure 4
(e)
Interpretation:
The structure of an example of detergent is to be drawn.
Concept introduction:
Synthetic detergents are the sodium salts of sulfonic acids.
(e)
Answer to Problem 25.14SP
The structure of an example of detergent is shown in Figure 5.
Explanation of Solution
Synthetic detergents are the sodium salts of sulfonic acids. Carboxylic acid is less acidic than sulfonic acids; therefore salts of sulfonic acids do not protonate in acidic wash water. The salts of sulfonic acid are soluble in water and can be used in hard water without formation of scum.
An example of detergent is alkylbenzenesulfonate. The structure of alkylbenzenesulfonate is shown below.
Figure 5
(f)
Interpretation:
The structure of an example of phospholipids is to be drawn.
Concept introduction:
Lipids that contain groups derived from phosphoric acid are phospholipids. The common phospholipids are phosphogylcerides. Generally it contains phosphoric acid in place of one fatty acids of a triglyceride.
(f)
Answer to Problem 25.14SP
The structure of an example of soap is shown in Figure 6.
Explanation of Solution
Lipids that contain groups derived from phosphoric acid are phospholipids. The common phospholipids are phosphogylcerides. Generally it contains phosphoric acid in place of one fatty acids of a triglyceride.
An example of phospholipids can be phosphatidic acids. The structure of phosphatidic acids is shown below.
Figure 6
(g)
Interpretation:
The structure of an example of prostaglandins is to be drawn.
Concept introduction:
Prostaglandins are the powerful biochemical regulators than steroids. These are the fatty derivatives and are isolated from the secretions of the prostate gland. They have an important role in regulating blood pressure, blood clotting.
They have cyclopentane ring with two long side chains that are trans to each other. And one side chain end with a carboxylic acid.
(g)
Answer to Problem 25.14SP
The structure of an example of prostaglandin is shown in Figure 7.
Explanation of Solution
Prostaglandins are the powerful biochemical regulators than steroids. These are the fatty derivatives and are isolated from the secretions of the prostate gland. They have an important role in regulating blood pressure, blood clotting.
They have cyclopentane ring with two long side chains that are trans to each other. And one side chain ends with a carboxylic acid.
The structure of prostaglandin is shown below.
Figure 7
(h)
Interpretation:
The structure of an example of steroid is to be drawn.
Concept introduction:
Steroids are the polycyclic molecules found in all plants and animals. They do not undergo hydrolysis; therefore they are classified as simple lipids. Their structure is based on the tetracyclic andostane ring.
(h)
Answer to Problem 25.14SP
The structure of an example of steroid is shown in Figure 8.
Explanation of Solution
Steroids are the polycyclic molecules found in all plants and animals. They do not undergo hydrolysis; therefore they are classified as simple lipids. Their structure is based on the tetracyclic andostane ring.
An example of steroid is androsterone. The structure of androsterone is shown below.
Figure 8
(i)
Interpretation:
The structure of an example of sesquiterpene is to be drawn.
Concept introduction:
An isoprene unit is bunched of five-carbon atoms. In terpenes, the isoprene units are connected to each other in head to tail fashion. The head part of an isoprene unit is branched, whereas the tail part of an isoprene unit is unbranched.
(i)
Answer to Problem 25.14SP
The structure of an example of sesquiterpene is shown in Figure 9.
Explanation of Solution
An isoprene unit is bunched of five-carbon atoms. In terpenes, the isoprene units are connected to each other in head to tail fashion. The head part of an isoprene unit is branched, whereas the tail part of an isoprene unit is unbranched.
An example of sesquiterpene is
Figure 9
There are three isoprene units in
Want to see more full solutions like this?
Chapter 25 Solutions
Organic Chemistry (9th Edition)
- Q7: Identify the functional groups in these molecules a) CH 3 b) Aspirin: HO 'N' Capsaicin HO O CH3 CH 3arrow_forwardQ2: Name the following alkanesarrow_forward1. Complete the following table in your laboratory notebook. Substance Formula Methanol CH3OH Ethanol C2H5OH 1-Propanol C3H7OH 1-Butanol C4H9OH Pentane C5H12 Hexane C6H14 Water H₂O Acetone C3H60 Structural Formula Molecular Weight (g/mol) Hydrogen Bond (Yes or No)arrow_forward
- Q1: Compare the relative acidity in each pair of compounds. Briefly explain. (a) CH3OH vs NH 3 (b) HF vs CH3COOH (c) NH3 vs CH4 (d) HCI vs HI (e) CH3COOH vs CH3SH (f) H₂C=CH2 vs CH3 CH3 (g) compare the acidity of the two bolded hydrogens O. H N- (h) compare the acidity of the two bolded hydrogens, draw resonance structures to explain H H Harrow_forwardQ3: Rank the following molecules in order of decreasing boiling point: (a) 3-methylheptane; (b) octane; (c) 2,4-dimethylhexane; (d) 2,2,4-trimethylpentane.arrow_forwardQ5: Conformations of Alkanes a) Draw a Newman Projection of the compound below about the C2-C3 bond. H3C Cli... H IIIH Br CH3arrow_forward
- The ability of atoms to associate with each other depends ona) the electronic structure and its spatial orientation.b) the electron affinity.c) The other two answers are correct.arrow_forwardWhat is the final volume after you reach the final temperature? I put 1.73 but the answer is wrong not sure why The initial volume of gas is 1.60 LL , the initial temperature of the gas is 23.0 °C°C , and the system is in equilibrium with an external pressure of 1.2 bar (given by the sum of a 1 bar atmospheric pressure and a 0.2 bar pressure due to a brick that rests on top of the piston). Then, as you did in Exercise 1, you heat the gas slowly until the temperature reaches 48.2 °Carrow_forwardQ4: Identify the type of Carbon ( methyl, primary, secondary, etc. ) indicated by this arrow.arrow_forward
- Q3: Curved Arrows, Lewis Acids & Bases, Nucleophiles and Electrophiles Considering the following reactions: a) Predict the products to complete the reactions. b) Use curved electron-pushing arrows to show the mechanism for the reaction in the forward direction. Redraw some of the compounds to explicitly illustrate all bonds that are broken and all bonds that are formed. c) Label Lewis acids and bases, nucleophiles and electrophiles in the reactions. A. S + AICI 3 B. + H₂Oarrow_forward3. A thermometer is placed in a test tube of chipped ice at -5.0 °C. The temperature is recorded at the time intervals shown below until room temperature is reached. Plot the data given below on graph paper and explain all flat, horizontal portions of the curve. Plot time on the X-axis! Time (min) Temperature (°C) 0 -5.0 2 -2.5 4 -1.0 6 0.0 10 0.0 15 0.0 20 0.0 25 0.0 30 1.5 35 4.0 40 8.0 45 11.5 50 15.0 55 17.5 60 19.0 65 20.0 70 20.0 75 20.0 80 20.0arrow_forwardNaming the Alkanes a) Write the IUPAC nomenclature of the compound below b) Draw 4-isopropyl-2,4,5-trimethylheptane, identify the primary, secondary, tertiary, and quaternary carbons. c) Rank pentane, neopentane and isopentane for boiling point. pentane: H3C-CH2-CH2-CH2-CH3 neopentane: CH3 H3C-Ċ-CH3 I CH3 isopentane: CH3 H3C-CH2-CH-CH3arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning