Introduction to Java Programming and Data Structures, Comprehensive Version (11th Edition)
Introduction to Java Programming and Data Structures, Comprehensive Version (11th Edition)
11th Edition
ISBN: 9780134670942
Author: Y. Daniel Liang
Publisher: PEARSON
Question
Book Icon
Chapter 25, Problem 25.11PE
Program Plan Intro

Display Tree

Program Plan:

  • Include the required import statement.
  • Define the main class.
    • Declare the necessary variables
    • Using start initialize the required.
      • Create an object for “BST” class.
      • Create border pane, tree view, text field and button.
      • Set the tree view as center, alignment.
      • Add an action even to the button.
      • Create a scene and place the pane in the stage.
      • Set the title.
      • Place the scene in the stage.
      • Display the stage.
    • Define the main method using public static main.
      • Initialize the call.
    • Define “TreeView” class.
      • Declare the required variables.
      • Define the constructor.
      • Define the “setStatus” method.
        • Add the value.
      • Define the “displayTree” method.
        • Clear the pane
        • Display the tree recursively.
    • Define the “displayTree” method.
      • Check if the left node value is not equal to null.
        • Draw a line to the up node.
        • Draw the left subtree recursively.
      • Check if the right node value is not equal to null.
        • Draw a line to the down node.
        • Draw the left subtree recursively.
      • Display the node.
    • Define the “BST” class.
      • Declare the required variables.
      • Create a default BST class.
      • Create a binary tree from an array of objects.
      • The “height” method will return the height of the tree.
      • Define the “search” method.
        • Start the traverse from the root of the tree.
        • If the search element is in the left subtree set that value in “current” variable otherwise set the “current” variable as right subtree value.
      • Define the “insert” method.
        • If the root is null create the tree otherwise insert the value into left or right subtree.
      • Define the “createNewNode”
        • Return the result of new node creations.
      • Define the “inorder”
        • Inorder traverse from the root.
      • Define the protected “inorder” method
        • Traverse the tree according to the inorder traversal concept.
      • Define the “postorder”
        • Postorder traverse from the root.
      • Define the protected “postorder” method
        • Traverse the tree according to the postorder traversal concept.
      • Define the “preorder”
        • Preorder traverse from the root.
      • Define the protected “preorder” method
        • Traverse the tree according to the preorder traversal concept.
      • Define the “TreeNode” class
        • Declare the required variables.
        • Define the constructor.
      • Define the “getSize” method.
        • Return the size.
      • Define the “getRoot” method
        • Return the root.
      • Define the “java.util.ArrayList” method.
        • Create an object for the array list.
        • If the “current” is not equal to null, add the value to the list.
        • If the “current” is less than 0, set the “current” as left subtree element otherwise set the “current” as right subtree element.
        • Return the list.
      • Define the “delete” method.
        • If the “current” is not equal to null, add the value to the list.
        • If the “current” is less than 0, delete the “current” as left subtree element otherwise delete the “current” as right subtree element.
        • Return the list.
      • Define the “iterator” method.
        • Call the “inorderIterator” and return the value.
      • Define the “inorderIterator”
        • Create an object for that method and return the value
      • Define the “inorderIterator” class.
        • Declare the variables.
        • Define the constructor.
          • Call the “inorder” method.
        • Define the “inorder” method.
          • Call the inner “inorder” method with the argument.
        • Define the TreeNode “inorder” method.
          • If the root value is null return the value, otherwise add the value into the list.
        • Define the “hasNext” method
          • If the “current” value is less than size of the list return true otherwise return false.
        • Define the “next” method
          • Return the list.
        • Define the “remove” method.
          • Call the delete method.
          • Clear the list then call the “inorder” method.
      • Define the “clear” method
        • Set the values to the variables
    • Define the interface.
      • Declare the required methods.
      • Define the required methods.

Blurred answer
Students have asked these similar questions
Please answer the JAVA OOP Programming Assignment scenario below: Patriot Ships is a new cruise line company which has a fleet of 10 cruise ships, each with a capacity of 300 passengers. To manage its operations efficiently, the company is looking for a program that can help track its fleet, manage bookings, and calculate revenue for each cruise. Each cruise is tracked by a Cruise Identifier (must be 5 characters long), cruise route (e.g. Miami to Nassau), and ticket price. The program should also track how many tickets have been sold for each cruise. Create an object-oriented solution with a menu that allows a user to select one of the following options: 1. Create Cruise – This option allows a user to create a new cruise by entering all necessary details (Cruise ID, route, ticket price). If the maximum number of cruises has already been created, display an error message. 2. Search Cruise – This option allows to search a cruise by the user provided cruise ID. 3. Remove Cruise – This op…
I need to know about the use and configuration of files and folders, and their attributes in Windows Server 2019.
Southern Airline has 15 daily flights from Miami to New York.  Each flight requires two pilots.  Flights that do not have two pilots are canceled (passengers are transferred to other airlines).  The average profit per flight is $6000.  Because pilots get sick from time to time, the airline is considering a policy of keeping four *reserve pilots on standby to replace sick pilots.  Such pilots would introduce an additional cost of $1800 per reserve pilot (whether they fly or not). The pilots on each flight are distinct and the likelihood of any pilot getting sick is independent of the likelihood of any other pilot getting sick.  Southern believes that the probability of any given pilot getting sick is 0.15.  A) Run a simulation of this situation with at least 1000 iterations and report the following for the present policy (no reserve pilots) and the proposed policy (four reserve pilots): The average daily utilization of the aircraft (percentage of total flights that fly) The…
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
C++ Programming: From Problem Analysis to Program...
Computer Science
ISBN:9781337102087
Author:D. S. Malik
Publisher:Cengage Learning
Text book image
Programming Logic & Design Comprehensive
Computer Science
ISBN:9781337669405
Author:FARRELL
Publisher:Cengage
Text book image
Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning
Text book image
EBK JAVA PROGRAMMING
Computer Science
ISBN:9781337671385
Author:FARRELL
Publisher:CENGAGE LEARNING - CONSIGNMENT
Text book image
New Perspectives on HTML5, CSS3, and JavaScript
Computer Science
ISBN:9781305503922
Author:Patrick M. Carey
Publisher:Cengage Learning
Text book image
CMPTR
Computer Science
ISBN:9781337681872
Author:PINARD
Publisher:Cengage