
(a)
Interpretation:
The percentage of the total
Concept introduction:
A heme group contains an iron atom in it. The heme unit is connected with a protein chain. A protein contains many amino acids. The number of amino acid is higher than the number of heme units in a hemoglobin molecule. There are different types of hemoglobin molecules which are categorized on the basis of their forms and functions.

Answer to Problem 25.10E
Only
Explanation of Solution
The percentage of dissolved gas depends on the extent of dissolution of gas in the aqueous medium. In plasma,
Therefore, only
Only
(b)
Interpretation:
The percentage of the total
Concept introduction:
A heme group contains an iron atom in it. The heme unit is connected with a protein chain. A protein contains many amino acids. The number of amino acid is higher than the number of heme units in a hemoglobin molecule. There are different types of hemoglobin molecules which are categorized on the basis of their forms and functions.

Answer to Problem 25.10E
Approximately,
Explanation of Solution
The hemoglobin serves various functions in different chemical forms. One form of hemoglobin acts as an oxygen carrier in the blood. This form is named as oxyhemoglobin. Oxyhemoglobin is the type of hemoglobin that transports oxygen. Most of the oxygen is transported by the blood in this form. The percentage for this form is around
Therefore,
Approximately,
(c)
Interpretation:
The percentage of the total
Concept introduction:
A heme group contains an iron atom in it. The heme unit is connected with a protein chain. A protein contains many amino acids. The number of amino acid is higher than the number of heme units in a hemoglobin molecule. There are different types of hemoglobin molecules which are categorized on the basis of their forms and functions.

Answer to Problem 25.10E
Approximately
Explanation of Solution
The hemoglobin serves various functions in different chemical forms. Carbaminohemoglobin is another form of hemoglobin which is formed by combining hemoglobin with
Therefore,
Approximately,
(d)
Interpretation:
The percentage of the total
Concept introduction:
A heme group contains an iron atom in it. The heme unit is connected with a protein chain. A protein contains many amino acids. The number of amino acid is higher than the number of heme units in a hemoglobin molecule. There are different types of hemoglobin molecules which are categorized on the basis of their forms and functions.

Answer to Problem 25.10E
Approximately,
Explanation of Solution
The percentage of dissolved gas depends on the extent of dissolution of gas in the aqueous medium. In plasma,
Therefore, only
Approximately,
(e)
Interpretation:
The percentage of the total
Concept introduction:
A heme group contains an iron atom in it. The heme unit is connected with a protein chain. A protein contains many amino acids. The number of amino acid is higher than the number of heme units in a hemoglobin molecule. There are different types of hemoglobin molecules which are categorized on the basis of their forms and functions.

Answer to Problem 25.10E
Approximately
Explanation of Solution
Bicarbonate ions
Therefore, around
Approximately,
Want to see more full solutions like this?
Chapter 25 Solutions
Chemistry For Today: General, Organic, And Biochemistry, Loose-leaf Version
- Determine the structures of the missing organic molecules in the following reaction: X+H₂O H* H+ Y OH OH Note: Molecules that share the same letter have the exact same structure. In the drawing area below, draw the skeletal ("line") structures of the missing organic molecules X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Click and drag to start drawing a structure. X Sarrow_forwardPredict the major products of this organic reaction. If there aren't any products, because nothing will happen, check the box under the drawing area instead. No reaction. HO. O :☐ + G Na O.H Click and drag to start drawing a structure. XS xs H₂Oarrow_forwardWhat are the angles a and b in the actual molecule of which this is a Lewis structure? H H C H- a -H b H Note for advanced students: give the ideal angles, and don't worry about small differences from the ideal groups may have slightly different sizes. a = b = 0 °arrow_forward
- What are the angles a and b in the actual molecule of which this is a Lewis structure? :0: HCOH a Note for advanced students: give the ideal angles, and don't worry about small differences from the ideal that might be caused by the fact that different electron groups may have slightly different sizes. a = 0 b=0° Sarrow_forwardDetermine the structures of the missing organic molecules in the following reaction: + H₂O +H OH O OH +H OH X Note: Molecules that share the same letter have the exact same structure. In the drawing area below, draw the skeletal ("line") structure of the missing organic molecule X. Click and drag to start drawing a structure.arrow_forwardIdentify the missing organic reactant in the following reaction: x + x O OH H* + ☑- X H+ O O Х Note: This chemical equation only focuses on the important organic molecules in the reaction. Additional inorganic or small-molecule reactants or products (like H₂O) are not shown. In the drawing area below, draw the skeletal ("line") structure of the missing organic reactant X. Click and drag to start drawing a structure. Carrow_forward
- CH3O OH OH O hemiacetal O acetal O neither O 0 O hemiacetal acetal neither OH hemiacetal O acetal O neither CH2 O-CH2-CH3 CH3-C-OH O hemiacetal O acetal CH3-CH2-CH2-0-c-O-CH2-CH2-CH3 O neither HO-CH2 ? 000 Ar Barrow_forwardWhat would be the best choices for the missing reagents 1 and 3 in this synthesis? 1. PPh3 2 2. n-BuLi 3 Draw the missing reagents in the drawing area below. You can draw them in any arrangement you like. • Do not draw the missing reagent 2. If you draw 1 correctly, we'll know what it is. • Note: if one of your reagents needs to contain a halogen, use bromine. Explanation Check Click and drag to start drawing a structure.arrow_forwardPredict the products of this organic reaction: NaBH3CN + NH2 ? H+ Click and drag to start drawing a structure. ×arrow_forward
- Predict the organic products that form in the reaction below: + OH +H H+ ➤ ☑ X - Y Note: You may assume you have an excess of either reactant if the reaction requires more than one of those molecules to form the products. In the drawing area below, draw the skeletal ("line") structures of the missing organic products X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Click and drag to start drawing a structure. Garrow_forwardPredict the organic products that form in the reaction below: OH H+ H+ + ☑ Y Note: You may assume you have an excess of either reactant if the reaction requires more than one of those molecules to form the products. In the drawing area below, draw the skeletal ("line") structures of the missing organic products X and Y. You may draw the structures in any arrangement that you like, so long as they aren't touching. Click and drag to start drawing a structure. ✓ marrow_forwardDetermine the structures of the missing organic molecules in the following reaction: + H₂O +H H+ Y Z ☑ ☑ Note: Molecules that share the same letter have the exact same structure. In the drawing area below, draw the skeletal ("line") structures of the missing organic molecules X, Y, and Z. You may draw the structures in any arrangement that you like, so long as they aren't touching. Molecule X shows up in multiple steps, but you only have to draw its structure once. Click and drag to start drawing a structure. AP +arrow_forward
- Chemical Principles in the LaboratoryChemistryISBN:9781305264434Author:Emil Slowinski, Wayne C. Wolsey, Robert RossiPublisher:Brooks ColeChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning

