bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 25, Problem 18P

(a)

To determine

The equivalent capacitance of the system.

(a)

Expert Solution
Check Mark

Answer to Problem 18P

The equivalent capacitance of the system is 12.0μF .

Explanation of Solution

Given information: The value of capacitor 1 is 18.0μF , value of capacitor 2 is 36.0μF , voltage of the battery is 12.0V .

The capacitors C1andC2 are in series.

Formula to calculate the equivalent capacitance of the system when they are connected in series.

1Ceq=1C1+1C2 (1)

Here,

Ceq is the equivalent capacitance of the system when they are connected in series.

C1 is the value of capacitor 1.

C2 is the value of capacitor 2.

Substitute 18.0μF for C1 , 36.0μF for C2 in equation (1) to find Ceq ,

1Ceq=118.0μF+136.0μFCeq=12.0μF

Thus, the equivalent capacitance of the system is 12.0μF .

Conclusion:

Therefore, the equivalent capacitance of the system is 12.0μF .

(b)

To determine

The energy stored in this equivalent capacitance.

(b)

Expert Solution
Check Mark

Answer to Problem 18P

The energy stored in this equivalent capacitance is 864μJ .

Explanation of Solution

Given information: The value of capacitor 1 is 18.0μF , value of capacitor 2 is 36.0μF , voltage of the battery is 12.0V .

Formula to calculate the energy stored in this equivalent capacitance.

E=12CV2 (2)

Here,

E is the energy stored in this equivalent capacitance.

V is the voltage of the battery.

C is the capacitance of the system.

Substitute 12.0V for V , 12.0μF for C in equation (2) to find E ,

E=12(12.0μF)×(12.0V)2=864μJ

Thus, the energy stored in this equivalent capacitance is 864μJ .

Conclusion:

Therefore, the energy stored in this equivalent capacitance is 864μJ .

(c)

To determine

The energy stored in each individual capacitor.

(c)

Expert Solution
Check Mark

Answer to Problem 18P

The energy stored in the capacitor 1 is 576μJ , energy stored in the capacitor 2 is 288μJ .

Explanation of Solution

Given information: The value of capacitor 1 is 18.0μF , value of capacitor 2 is 36.0μF , voltage of the battery is 12.0V .

In series connection, the charge will be same in capactor 1 and capacitor 2,

Q1=Q2C1V1=C2V2 (3)

It is given that the total voltage of the battery is 12.0V .

Write the expression to calculate the voltage across capacitor 1.

V1+V2=12.0VV1=12.0VV2 (4)

Substitute 12.0VV2 for V1 in equation (3) to find V2 ,

V2=C1C2(12.0VV2) (5)

Substitute 18.0μF for C1 , 36.0μF for C2 in equation (5) to find V2 ,

V2=18.0μF36.0μF(12.0VV2)=60.5V21.5V2=6V2=4.0V

Thus, the voltage across capacitor 2 is 4.0V .

Substitute 4.0V for V in equation (4) to find V1 ,

V1=12.0V4.0V=8.0V

Thus, the voltage across capacitor 1 is 8.0V .

Formula to calculate the energy stored in the capacitor 1.

E1=12C1V2 (6)

Here,

E1 is the energy stored in the capacitor 1.

Substitute 12.0V for V , 18.0μF for C in equation (6) to find E1 ,

E1=12(18.0μF)×(8.0V)2=576μJ

Thus, the energy stored in the capacitor 1 is 576μJ .

Formula to calculate the energy stored in the capacitor 2.

E2=12C2V2 (7)

Here,

E2 is the energy stored in the capacitor 2.

Substitute 12.0V for V , 36.0μF for C in equation (7) to find E2 ,

E2=12(36.0μF)×(4.0V)2=288μJ

Thus, the energy stored in the capacitor 2 is 288μJ .

Conclusion:

Therefore, the energy stored in the capacitor 1 is 576μJ , energy stored in the capacitor 2 is 288μJ .

(d)

To determine

To show: The sum of these two energies is the same as the energy found in part (b).

(d)

Expert Solution
Check Mark

Answer to Problem 18P

The sum of these two energies is the same as the energy found in part (b) is 864μJ .

Explanation of Solution

Given information: The value of capacitor 1 is 18.0μF , value of capacitor 2 is 36.0μF , voltage of the battery is 12.0V .

The energy stored in this equivalent capacitance is 864μJ .

The energy stored in the capacitor 1 is 576μJ .

The energy stored in the capacitor 2 is 288μJ .

Formula to calculate the sum of these two energies.

E=E1+E2 (8)

Here,

E is the sum of these two energies.

Substitute 576μJ for E1 , 288μJ for E2 in equation (8) to find E ,

E=576μJ+288μJ=864μJ

Thus, the sum of these two energies is the same as the energy found in part (b).

Conclusion:

Therefore, the sum of these two energies is the same as the energy found in part (b) is 864μJ .

(e)

To determine

The reason that this equality will always be true, or the reason that it depends on the number of capacitors and their capacitances.

(e)

Expert Solution
Check Mark

Answer to Problem 18P

This equality will always be true because the energy stored in series and parallel for the capacitors is same.

Explanation of Solution

Given information: The value of capacitor 1 is 18.0μF , value of capacitor 2 is 36.0μF , voltage of the battery is 12.0V .

Formula to calculate the energy stored by the capacitor in series.

ES=E1+E2

Here,

ES is the energy stored by the capacitor in series.

Formula to calculate the energy stored by the capacitor in parallel.

EP=E1+E2

Here,

EP is the energy stored by the capacitor in parallel.

The value of the energy stored by the capacitor in series and the energy stored by the capacitor in parallel are equal so, this equality will always be true.

Thus, this equality will always be true because the energy stored in series and parallel for the capacitors is same.

Conclusion:

Therefore, this equality will always be true because the energy stored in series and parallel for the capacitors is same.

(f)

To determine

The required potential difference across them so that the combination stores the same energy as in part (b).

(f)

Expert Solution
Check Mark

Answer to Problem 18P

The required potential difference across them so that the combination stores the same energy as in part (b) is 5.656V .

Explanation of Solution

Given information: The value of capacitor 1 is 18.0μF , value of capacitor 2 is 36.0μF , voltage of the battery is 12.0V .

If the same capacitors are connected in parallel.

Formula to calculate the equivalent capacitance of the system when they are connected in parallel.

Ceq=C1+C2 (9)

Here,

Ceq is the equivalent capacitance of the system when they are connected in parallel.

The energy stored in this equivalent capacitance is 864μJ .

Formula to calculate the required potential difference across them so that the combination stores the same energy as in part (b).

E=12CeqV2V=2ECeq (10)

Substitute 864μJ for E , C1+C2 for Ceq in equation (10) to find V ,

V=2×864μJC1+C2 (11)

Substitute 18.0μF for C1 , 36.0μF for C2 in equation (11) to find V ,

V=2×864μJ18.0μF+36.0μF=5.656V

Thus, the required potential difference across them so that the combination stores the same energy as in part (b) is 5.656V .

Conclusion:

Therefore, the required potential difference across them so that the combination stores the same energy as in part (b) is 5.656V .

(g)

To determine

The capacitor stores more energy C1orC2 .

(g)

Expert Solution
Check Mark

Answer to Problem 18P

The capacitor C1 stores more energy because the energy store by the capacitor 1 i.e, C1 is more than the energy stored by the capacitor 2 i.e, C2 .

Explanation of Solution

Given information: The value of capacitor 1 is 18.0μF , value of capacitor 2 is 36.0μF , voltage of the battery is 12.0V .

The capacitor C1 stores more energy because the energy store by the capacitor 1 i.e, C1 is more than the energy stored by the capacitor 2 i.e, C2 .

Thus, the capacitor C1 stores more energy.

Conclusion:

Therefore, the capacitor C1 stores more energy because the energy store by the capacitor 1 i.e, C1 is more than the energy stored by the capacitor 2 i.e, C2 .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
No chatgpt pls
What is the current, in amps, across a conductor that has a resistance of10 Ω and a voltage of 20 V?   2. A conductor draws a current of 100 A and a resistance of 5 Ω.  What is thevoltageacross the conductor?   3. What is the resistance, in ohm’s, of a conductor that has a voltage of 80 kVand acurrent of 200 mA?   4. An x-ray imaging system that draws a current of 90 A is supplied with 220V.  What is the power consumed?   5. An x-ray is produced using 800 mA and 100 kV.  What is the powerconsumed in kilowatts?
ՍՈՈՒ XVirginia Western Community Coll x P Course Home X + astering.pearson.com/?courseld=13289599#/ Figure y (mm) x=0x = 0.0900 m All ✓ Correct For either the time for one full cycle is 0.040 s; this is the period. Part C - ON You are told that the two points x = 0 and x = 0.0900 m are within one wavelength of each other. If the wave is moving in the +x-direction, determine the wavelength. Express your answer to two significant figures and include the appropriate units. 0 t(s) λ = Value m 0.01 0.03 0.05 0.07 Copyright © 2025 Pearson Education Inc. All rights reserved. 日 F3 F4 F5 1775 % F6 F7 B F8 Submit Previous Answers Request Answer ? × Incorrect; Try Again; 3 attempts remaining | Terms of Use | Privacy Policy | Permissions | Contact Us | Cookie Settings 28°F Clear 4 9:23 PM 1/20/2025 F9 prt sc F10 home F11 end F12 insert delete 6 7 29 & * ( 8 9 0 t = back Ο

Chapter 25 Solutions

Bundle: Physics For Scientists And Engineers With Modern Physics, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Multi-term

Ch. 25 - Review. A small object of mass m carries a charge...Ch. 25 - Find the equivalent capacitance of a 4.20-F...Ch. 25 - Prob. 8PCh. 25 - A group of identical capacitors is connected first...Ch. 25 - Three capacitors are connected to a battery as...Ch. 25 - Four capacitors are connected as shown in Figure...Ch. 25 - (a) Find the equivalent capacitance between points...Ch. 25 - Find the equivalent capacitance between points a...Ch. 25 - You are working at an electronics fabrication...Ch. 25 - Two capacitors give an equivalent capacitance of...Ch. 25 - Prob. 16PCh. 25 - A 3.00-F capacitor is connected to a 12.0-V...Ch. 25 - Prob. 18PCh. 25 - Prob. 19PCh. 25 - Two identical parallel-plate capacitors, each with...Ch. 25 - Two capacitors, C1 = 25.0 F and C2 = 5.00 F, are...Ch. 25 - A parallel-plate capacitor has a charge Q and...Ch. 25 - Prob. 23PCh. 25 - Prob. 24PCh. 25 - Determine (a) the capacitance and (b) the maximum...Ch. 25 - The voltage across an air-filled parallel-plate...Ch. 25 - Prob. 27PCh. 25 - Each capacitor in the combination shown in Figure...Ch. 25 - Prob. 29PCh. 25 - An infinite line of positive charge lies along the...Ch. 25 - Prob. 31PCh. 25 - Prob. 32PCh. 25 - Prob. 33APCh. 25 - Four parallel metal plates P1, P2, P3, and P4,...Ch. 25 - A uniform electric field E = 3 000 V/m exists...Ch. 25 - Two large, parallel metal plates, each of area A,...Ch. 25 - A parallel-plate capacitor with vacuum between its...Ch. 25 - Why is the following situation impossible? A...Ch. 25 - Two square plates of sides are placed parallel to...Ch. 25 - (a) Two spheres have radii a and b, and their...Ch. 25 - Prob. 41APCh. 25 - A parallel-plate capacitor of plate separation d...Ch. 25 - To repair a power supply for a stereo amplifier,...Ch. 25 - Prob. 44APCh. 25 - You are part of a team working in a machine parts...Ch. 25 - Consider two long, parallel, and oppositely...Ch. 25 - Some physical systems possessing capacitance...Ch. 25 - A parallel-plate capacitor with plates of area LW...Ch. 25 - A capacitor is constructed from two square,...Ch. 25 - This problem is a continuation of Problem 45. You...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY