Concept explainers
Two capacitors, C1 = 18.0 μF and C2 = 36.0 μF, are connected in series, and a 12.0-V battery is connected across the two capacitors. Find (a) the equivalent capacitance and (b) the energy stored in this equivalent capacitance. (c) Find the energy stored in each individual capacitor. (d) Show that the sum of these two energies is the same as the energy found in part (b). (e) Will this equality always be true, or docs it depend on the number of capacitors and their capacitances? (f) If the same capacitors were connected in parallel, what potential difference would be required across them so that the combination stores the same energy as in part (a)? (g) Which capacitor stores more energy in this situation, C1 or C2?
(a)
Answer to Problem 18P
Explanation of Solution
Given information: The value of capacitor 1 is
Explanation:
The capacitors
Formula to calculate the equivalent capacitance of the system when they are connected in series.
Here,
Substitute
Thus, the equivalent capacitance of the system is
Conclusion:
Therefore, the equivalent capacitance of the system is
(b)
Answer to Problem 18P
Explanation of Solution
Given information: The value of capacitor 1 is
Explanation:
Formula to calculate the energy stored in this equivalent capacitance.
Here,
Substitute
Thus, the energy stored in this equivalent capacitance is
Conclusion:
Therefore, the energy stored in this equivalent capacitance is
(c)
Answer to Problem 18P
Explanation of Solution
Given information: The value of capacitor 1 is
Explanation:
In series connection, the charge will be same in capactor 1 and capacitor 2,
It is given that the total voltage of the battery is
Write the expression to calculate the voltage across capacitor 1.
Substitute
Substitute
Thus, the voltage across capacitor 2 is
Substitute
Thus, the voltage across capacitor 1 is
Formula to calculate the energy stored in the capacitor 1.
Here,
Substitute
Thus, the energy stored in the capacitor 1 is
Formula to calculate the energy stored in the capacitor 2.
Here,
Substitute
Thus, the energy stored in the capacitor 2 is
Conclusion:
Therefore, the energy stored in the capacitor 1 is
(d)
To show: The sum of these two energies is the same as the energy found in part (b).
Answer to Problem 18P
Explanation of Solution
Given information: The value of capacitor 1 is
Explanation:
The energy stored in this equivalent capacitance is
The energy stored in the capacitor 1 is
The energy stored in the capacitor 2 is
Formula to calculate the sum of these two energies.
Here,
Substitute
Thus, the sum of these two energies is the same as the energy found in part (b).
Conclusion:
Therefore, the sum of these two energies is the same as the energy found in part (b) is
(e)
Answer to Problem 18P
Explanation of Solution
Given information: The value of capacitor 1 is
Explanation:
Formula to calculate the energy stored by the capacitor in series.
Here,
Formula to calculate the energy stored by the capacitor in parallel.
Here,
The value of the energy stored by the capacitor in series and the energy stored by the capacitor in parallel are equal so, this equality will always be true.
Thus, this equality will always be true because the energy stored in series and parallel for the capacitors is same.
Conclusion:
Therefore, this equality will always be true because the energy stored in series and parallel for the capacitors is same.
(f)
Answer to Problem 18P
Explanation of Solution
Given information: The value of capacitor 1 is
Explanation:
If the same capacitors are connected in parallel.
Formula to calculate the equivalent capacitance of the system when they are connected in parallel.
Here,
The energy stored in this equivalent capacitance is
Formula to calculate the required potential difference across them so that the combination stores the same energy as in part (b).
Substitute
Substitute
Thus, the required potential difference across them so that the combination stores the same energy as in part (b) is
Conclusion:
Therefore, the required potential difference across them so that the combination stores the same energy as in part (b) is
(g)
Answer to Problem 18P
Explanation of Solution
Given information: The value of capacitor 1 is
Explanation:
The capacitor
Thus, the capacitor
Conclusion:
Therefore, the capacitor
Want to see more full solutions like this?
Chapter 25 Solutions
Physics for Scientists and Engineers
- 19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardair is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward
- 13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forward
- Calculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forwardNo chatgpt pls will upvotearrow_forwardCan you help me solve the questions pleasearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning