Make Sense? During the winter, you program your home thermostat so that at midnight, the temperature is 55 ∘ . This temperature is maintained until 6 a.m. Then the house begins to warm up so that by 9 a.m. the temperature is 65 ∘ . At 6 p.m. the house begins to cool. By 9 p.m. the temperature is again 55 ∘ . The graph illustrates home temperature, f (l), as a function of house after midnight, t. In Exercises 137-140, determine whether each statement makes sense or does not make sense, and explain your reasoning. If the statement makes sense, graph the new function on the domain (0.24). If the statement does not make sense, correct the function in the statement and graph the corrected function on the domain (0.24). I decided to keep the house 5 ∘ warmer that before, so I reprogrammed the thermostat to y = f ( t ) + 5 .
Make Sense? During the winter, you program your home thermostat so that at midnight, the temperature is 55 ∘ . This temperature is maintained until 6 a.m. Then the house begins to warm up so that by 9 a.m. the temperature is 65 ∘ . At 6 p.m. the house begins to cool. By 9 p.m. the temperature is again 55 ∘ . The graph illustrates home temperature, f (l), as a function of house after midnight, t. In Exercises 137-140, determine whether each statement makes sense or does not make sense, and explain your reasoning. If the statement makes sense, graph the new function on the domain (0.24). If the statement does not make sense, correct the function in the statement and graph the corrected function on the domain (0.24). I decided to keep the house 5 ∘ warmer that before, so I reprogrammed the thermostat to y = f ( t ) + 5 .
Solution Summary: The author analyzes whether the statement "I decided to keep my home 5 degree warmer than before, so I reprogram the thermostat at y=f(t)+5°" makes
Make Sense?During the winter, you program your home thermostat so that at midnight, the temperature is
55
∘
. This temperature is maintained until 6 a.m. Then the house begins to warm up so that by 9 a.m. the temperature is
65
∘
. At 6 p.m. the house begins to cool. By 9 p.m. the temperature is again
55
∘
. The graph illustrates home temperature, f (l), as a function of house after midnight, t.
In Exercises 137-140, determine whether each statement makes sense or does not make sense, and explain your reasoning. If the statement makes sense, graph the new function on the domain (0.24). If the statement does not make sense, correct the function in the statement and graph the corrected function on the domain (0.24).
I decided to keep the house
5
∘
warmer that before, so I reprogrammed the thermostat to
y
=
f
(
t
)
+
5
.
Directions: Use the equation A = Pet to answer each question and be sure to show all your work.
1. If $5,000 is deposited in an account that receives 6.1% interest compounded continuously, how much money is in the
account after 6 years?
2. After how many years will an account have $12,000 if $6,000 is deposited, and the account receives 3.8% interest
compounded continuously?
3. Abigail wants to save $15,000 to buy a car in 7 years. If she deposits $10,000 into an account that receives 5.7% interest
compounded continuously, will she have enough money in 7 years?
4. Daniel deposits $8,000 into a continuously compounding interest account. After 18 years, there is $13,006.40 in the account.
What was the interest rate?
5. An account has $26,000 after 15 years. The account received 2.3% interest compounded continuously. How much was
deposited initially?
TRIANGLES
INDEPENDENT PRACTICE
ription Criangle write and cow
Using each picture or description of triangle write and solve an equation in ordering the
number of degrees in each angle
TRIANGLE
EQUATION & WORK
ANGLE MEASURES
A
B
-(7x-2)°
(4x)
(3x)°
(5x − 10)
C
(5x – 2)
(18x)
E
3.
G
4.
H
(16x)°
LL
2A=
2B=
ZE=
Answer ASAP and every part, please. Structures.
Chapter 2 Solutions
Algebra And Trigonometry 6th. Edition Annotated Instructor's Copy Blitzer
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY