
Concept explainers
(a)
Interpretation:
Given reaction has to be completed representing the mass number and
Concept Introduction: In this radioactive decay process the unstable isotopes loses their energy by emitting radiation. It is converted to stable isotopes. The emitting radiations are positron emission, gamma emission, beta emission and electron capture.
Mass number is the sum of neutron and protons.
Atomic number is the number of protons.
In alpha decay, there will be lose of
In beta decay, there will be a lose of electron from nucleus (neutron turns into proton): there will be no change in mass number and atomic number increases by one.
(a)

Answer to Problem 11PS
Explanation of Solution
The radioactive isotope of iron-54 when irradiated with alpha particle forms
(b)
Interpretation:
Given reaction has to be completed representing the mass number and atomic number.
Introduction: In this radioactive decay process the unstable isotopes loses their energy by emitting radiation. It is converted to stable isotopes. The emitting radiations are positron emission, gamma emission, beta emission and electron capture.
Mass number is the sum of neutron and protons.
Atomic number is the number of protons.
In alpha decay, there will be lose of
In beta decay, there will be a lose of electron from nucleus (neutron turns into proton): there will be no change in mass number and atomic number increases by one.
(b)

Answer to Problem 11PS
Explanation of Solution
The radioactive isotope of Aluminium-27 when irradiated with alpha particle forms
(c)
Interpretation:
Given reaction has to be completed representing the mass number and atomic number.
Introduction: In this radioactive decay process the unstable isotopes loses their energy by emitting radiation. It is converted to stable isotopes. The emitting radiations are positron emission, gamma emission, beta emission and electron capture.
Mass number is the sum of neutron and protons.
Atomic number is the number of protons.
In alpha decay, there will be lose of
In beta decay, there will be a lose of electron from nucleus (neutron turns into proton): there will be no change in mass number and atomic number increases by one.
(c)

Answer to Problem 11PS
Explanation of Solution
The radioactive isotope of Sulphur-32 is irradiated with neutron forms
(d)
Interpretation:
Given reaction has to be completed representing the mass number and atomic number.
Introduction: In this radioactive decay process the unstable isotopes loses their energy by emitting radiation. It is converted to stable isotopes. The emitting radiations are positron emission, gamma emission, beta emission and electron capture.
Mass number is the sum of neutron and protons.
Atomic number is the number of protons.
In alpha decay, there will be lose of
In beta decay, there will be a lose of electron from nucleus (neutron turns into proton): there will be no change in mass number and atomic number increases by one.
(d)

Answer to Problem 11PS
Explanation of Solution
The radioactive isotope of
(e)
Interpretation:
Given reaction has to be completed representing the mass number and atomic number.
Introduction: In this radioactive decay process the unstable isotopes loses their energy by emitting radiation. It is converted to stable isotopes. The emitting radiations are positron emission, gamma emission, beta emission and electron capture.
Mass number is the sum of neutron and protons.
Atomic number is the number of protons.
In alpha decay, there will be lose of
In beta decay, there will be a lose of electron from nucleus (neutron turns into proton): there will be no change in mass number and atomic number increases by one.
(e)

Answer to Problem 11PS
Explanation of Solution
The radioactive isotope of
(f)
Interpretation:
Given reaction has to be completed representing the mass number and atomic number.
Introduction: In this radioactive decay process the unstable isotopes loses their energy by emitting radiation. It is converted to stable isotopes. The emitting radiations are positron emission, gamma emission, beta emission and electron capture.
Mass number is the sum of neutron and protons.
Atomic number is the number of protons.
In alpha decay, there will be lose of
In beta decay, there will be a lose of electron from nucleus (neutron turns into proton): there will be no change in mass number and atomic number increases by one.
(f)

Answer to Problem 11PS
Explanation of Solution
The radioactive isotope of
Want to see more full solutions like this?
Chapter 25 Solutions
Chemistry & Chemical Reactivity
- Steps and explanations pleasearrow_forwardUse diagram to answer the following: 1.Is the overall rxn endo- or exothermic. Explain briefly your answer____________________2. How many steps in this mechanism?_____________3. Which is the rate determining step? Explain briefly your answer____________________4. Identify (circle and label) the reactants,the products and intermediate (Is a Cation, Anion, or a Radical?) Please explain and provide full understanding.arrow_forwardDraw the entire mechanism and add Curved Arrows to show clearly how electrons areredistributed in the process. Please explain and provide steps clearly.arrow_forward
- Match the denticity to the ligand. Water monodentate ✓ C₂O2 bidentate H₂NCH₂NHCH2NH2 bidentate x EDTA hexadentate Question 12 Partially correct Mark 2 out of 2 Flag question Provide the required information for the coordination compound shown below: Na NC-Ag-CN] Number of ligands: 20 Coordination number: 2✔ Geometry: linear Oxidation state of transition metal ion: +3 x in 12 correct out of 2 question Provide the required information for the coordination compound shown below. Na NC-Ag-CN] Number of ligands: 20 Coordination number: 2 Geometry: linear 0 Oxidation state of transition metal ion: +3Xarrow_forwardCan you explain step by step behind what the synthetic strategy would be?arrow_forwardPlease explain step by step in detail the reasoning behind this problem/approach/and answer. thank you!arrow_forward
- 2. Predict the product(s) that forms and explain why it forms. Assume that any necessary catalytic acid is present. .OH HO H₂N OHarrow_forwardconsider the rate of the reaction below to be r. Whats the rate after each reaction? Br + NaCN CN + NaBr a. Double the concentration of alkyl bromide b. Halve the concentration of the electrophile & triple concentration of cyanide c. Halve the concentration of alkyl chloridearrow_forwardPredict the organic reactant that is involved in the reaction below, and draw the skeletal ("line") structures of the missing organic reactant. Please include all steps & drawings & explanations.arrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHERChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning




