EBK INTRODUCTION TO THE PRACTICE OF STA
EBK INTRODUCTION TO THE PRACTICE OF STA
8th Edition
ISBN: 9781319116828
Author: Moore
Publisher: VST
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 2.5, Problem 114E

(a)

To determine

To find: The predicted values and residuals for each of the four regression equation.

(a)

Expert Solution
Check Mark

Answer to Problem 114E

Solution: The predicted values and residuals for Data set A is given below:

xA

yA

Predicted values

Residual

10

8.04

8.001

0.039

8

6.95

7.001

0.051

13

7.58

9.501

1.921

9

8.81

7.501

1.309

11

8.33

8.501

0.171

14

9.96

10.001

0.041

6

7.24

6.001

1.239

4

4.26

5.000

0.740

12

10.84

9.001

1.839

7

4.82

6.501

1.681

5

5.68

5.501

0.179

The predicted values and residuals for Data set B is given below:

xB

yB

Predicted values

Residual

10

9.14

8.001

1.139

8

8.14

7.001

1.139

13

8.74

9.501

0.761

9

8.77

7.501

1.269

11

9.26

8.501

0.759

14

8.10

10.001

1.901

6

6.13

6.001

0.129

4

3.10

5.000

1.901

12

9.13

9.001

0.129

7

7.26

6.501

0.759

5

4.74

5.501

0.761

The predicted values and residuals for Data set C is given below:

xC

yC

Predicted values

Residual

10

7.46

7.999

0.540

8

6.77

7.000

0.230

13

12.74

9.499

3.241

9

7.11

7.50

0.390

11

7.81

8.499

0.689

14

8.84

9.999

1.159

6

6.08

6.001

0.079

4

5.39

5.001

0.389

12

8.15

8.999

0.849

7

6.42

6.501

0.081

5

5.73

5.501

0.229

The predicted values and residuals for Data set D is given below:

xD

yD

Predicted values

Residual

8

6.58

7.001

0.421

8

5.76

7.001

1.241

8

7.71

7.001

0.709

8

8.84

7.001

1.839

8

8.47

7.001

1.469

8

7.04

7.001

0.039

8

5.25

7.001

1.751

8

5.56

7.001

1.441

8

7.91

7.001

0.909

8

6.89

7.001

0.111

19

12.50

12.5

0.000

Explanation of Solution

Calculation: To predict y for Data set A, Minitab is used. The steps to be followed are:

Step 1: Go to the Minitab worksheet.

Step 2: Go to Stat > Regression > Regression.

Step 3: Enter the variable yA in the response and enter the variable xA in the predictor column.

Step 4: Go to results and select “The table of fits and residuals.”

Step 5: Click OK.

Hence, the result is

xA

yA

Predicted values

Residual

10

8.04

8.001

0.039

8

6.95

7.001

0.051

13

7.58

9.501

1.921

9

8.81

7.501

1.309

11

8.33

8.501

0.171

14

9.96

10.001

0.041

6

7.24

6.001

1.239

4

4.26

5.000

0.740

12

10.84

9.001

1.839

7

4.82

6.501

1.681

5

5.68

5.501

0.179

To predict y for Data set B, Minitab is used. The steps to be followed are:

Step 1: Go to the Minitab worksheet.

Step 2: Go to Stat > Regression > Regression.

Step 3: Enter the variable yB in the response and enter the variable xB in the predictor column.

Step 4: Go to results and select “The table of fits and residuals.”

Step 5: Click OK.

Hence, the result is

xB

yB

Predicted values

Residual

10

9.14

8.001

1.139

8

8.14

7.001

1.139

13

8.74

9.501

0.761

9

8.77

7.501

1.269

11

9.26

8.501

0.759

14

8.10

10.001

1.901

6

6.13

6.001

0.129

4

3.10

5.000

1.901

12

9.13

9.001

0.129

7

7.26

6.501

0.759

5

4.74

5.501

0.761

To predict y for Data set C, Minitab is used. The steps to be followed are:

Step 1: Go to the Minitab worksheet.

Step 2: Go to Stat > Regression > Regression.

Step 3: Enter the variable yC in the response and enter the variable xC in the predictor column.

Step 4: Go to results and select “The table of fits and residuals.”

Step 5: Click OK.

Hence, the result is

xC

yC

Predicted values

Residual

10

7.46

7.999

0.540

8

6.77

7.000

0.230

13

12.74

9.499

3.241

9

7.11

7.50

0.390

11

7.81

8.499

0.689

14

8.84

9.999

1.159

6

6.08

6.001

0.079

4

5.39

5.001

0.389

12

8.15

8.999

0.849

7

6.42

6.501

0.081

5

5.73

5.501

0.229

To predict y for Data set D, Minitab is used. The steps to be followed are:

Step 1: Go to the Minitab worksheet.

Step 2: Go to Stat > Regression > Regression.

Step 3: Enter the variable yD in the response and enter the variable xD in the predictor column.

Step 4: Go to results and select “The table of fits and residuals.”

Step 5: Click OK.

Hence, the result is

xD

yD

Predicted values

Residual

8

6.58

7.001

0.421

8

5.76

7.001

1.241

8

7.71

7.001

0.709

8

8.84

7.001

1.839

8

8.47

7.001

1.469

8

7.04

7.001

0.039

8

5.25

7.001

1.751

8

5.56

7.001

1.441

8

7.91

7.001

0.909

8

6.89

7.001

0.111

19

12.50

12.5

0.000

Interpretation: The residual values are the differences of observed value and the predicted value.

(b)

To determine

To graph: The residual versus x for each of the four datasets.

(b)

Expert Solution
Check Mark

Explanation of Solution

Graph: To plot the residual versus x for each of the four datasets, Minitab is used. The steps to be followed are:

Step 1: Go to the Minitab worksheet.

Step 2: Go to Stat > Regression > Regression.

Step 3: Enter the variable yA in the response and enter the variable xA in the predictor column.

Step 4: Go to graph and select Residual versus fits.

Step 5: Click OK.

Hence, the obtained graph is

EBK INTRODUCTION TO THE PRACTICE OF STA, Chapter 2.5, Problem 114E , additional homework tip  1

Similarly, repeat the steps for the residual plot versus x for Dataset B:

EBK INTRODUCTION TO THE PRACTICE OF STA, Chapter 2.5, Problem 114E , additional homework tip  2

The residual plot versus x for Dataset C:

EBK INTRODUCTION TO THE PRACTICE OF STA, Chapter 2.5, Problem 114E , additional homework tip  3

The residual plot versus x for Dataset D:

EBK INTRODUCTION TO THE PRACTICE OF STA, Chapter 2.5, Problem 114E , additional homework tip  4

(c)

To determine

To explain: The summary for the residuals.

(c)

Expert Solution
Check Mark

Answer to Problem 114E

Solution: The regression lines for datasets A and C fit the data quite well. The residual plot for dataset C shows strong correlation between the variables.

Explanation of Solution

For the Data set A, the residual plot has no correlation around a zero residual and this line fits the data quite well. For Data set B, the residual plot is in the form of arc and shows no correlation. This regression line is not a good representation of the data. For the Data set C, there is a strong correlation between the variables. So, the regression line fits well in the data and shows one outlier. For the Data set D, the residual plot is vertical. This is not a good prediction equation and there is one outlier.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
T1.4: Let ẞ(G) be the minimum size of a vertex cover, a(G) be the maximum size of an independent set and m(G) = |E(G)|. (i) Prove that if G is triangle free (no induced K3) then m(G) ≤ a(G)B(G). Hints - The neighborhood of a vertex in a triangle free graph must be independent; all edges have at least one end in a vertex cover. (ii) Show that all graphs of order n ≥ 3 and size m> [n2/4] contain a triangle. Hints - you may need to use either elementary calculus or the arithmetic-geometric mean inequality.
We consider the one-period model studied in class as an example. Namely, we assumethat the current stock price is S0 = 10. At time T, the stock has either moved up toSt = 12 (with probability p = 0.6) or down towards St = 8 (with probability 1−p = 0.4).We consider a call option on this stock with maturity T and strike price K = 10. Theinterest rate on the money market is zero.As in class, we assume that you, as a customer, are willing to buy the call option on100 shares of stock for $120. The investor, who sold you the option, can adopt one of thefollowing strategies:ˆ Strategy 1: (seen in class) Buy 50 shares of stock and borrow $380.ˆ Strategy 2: Buy 55 shares of stock and borrow $430.ˆ Strategy 3: Buy 60 shares of stock and borrow $480.ˆ Strategy 4: Buy 40 shares of stock and borrow $280.(a) For each of strategies 2-4, describe the value of the investor’s portfolio at time 0,and at time T for each possible movement of the stock.(b) For each of strategies 2-4, does the investor have…
Negate the following compound statement using De Morgans's laws.

Chapter 2 Solutions

EBK INTRODUCTION TO THE PRACTICE OF STA

Ch. 2.2 - Prob. 11UYKCh. 2.2 - Prob. 12UYKCh. 2.2 - Prob. 13UYKCh. 2.2 - Prob. 14UYKCh. 2.2 - Prob. 15UYKCh. 2.2 - Prob. 16UYKCh. 2.2 - Prob. 17UYKCh. 2.2 - Prob. 18ECh. 2.2 - Prob. 19ECh. 2.2 - Prob. 20ECh. 2.2 - Prob. 21ECh. 2.2 - Prob. 22ECh. 2.2 - Prob. 23ECh. 2.2 - Prob. 24ECh. 2.2 - Prob. 25ECh. 2.2 - Prob. 26ECh. 2.2 - Prob. 27ECh. 2.2 - Prob. 28ECh. 2.2 - Prob. 29ECh. 2.2 - Prob. 30ECh. 2.2 - Prob. 31ECh. 2.2 - Prob. 32ECh. 2.2 - Prob. 33ECh. 2.2 - Prob. 34ECh. 2.2 - Prob. 35ECh. 2.2 - Prob. 36ECh. 2.2 - Prob. 37ECh. 2.3 - Prob. 38UYKCh. 2.3 - Prob. 39UYKCh. 2.3 - Prob. 40ECh. 2.3 - Prob. 41ECh. 2.3 - Prob. 42ECh. 2.3 - Prob. 43ECh. 2.3 - Prob. 44ECh. 2.3 - Prob. 45ECh. 2.3 - Prob. 46ECh. 2.3 - Prob. 47ECh. 2.3 - Prob. 48ECh. 2.3 - Prob. 49ECh. 2.3 - Prob. 50ECh. 2.3 - Prob. 51ECh. 2.3 - Prob. 52ECh. 2.3 - Prob. 53ECh. 2.3 - Prob. 54ECh. 2.3 - Prob. 55ECh. 2.3 - Prob. 56ECh. 2.3 - Prob. 57ECh. 2.3 - Prob. 58ECh. 2.3 - Prob. 59ECh. 2.3 - Prob. 60ECh. 2.3 - Prob. 61ECh. 2.4 - Prob. 62UYKCh. 2.4 - Prob. 63UYKCh. 2.4 - Prob. 64UYKCh. 2.4 - Prob. 65UYKCh. 2.4 - Prob. 66ECh. 2.4 - Prob. 67ECh. 2.4 - Prob. 68ECh. 2.4 - Prob. 69ECh. 2.4 - Prob. 70ECh. 2.4 - Prob. 71ECh. 2.4 - Prob. 72ECh. 2.4 - Prob. 73ECh. 2.4 - Prob. 74ECh. 2.4 - Prob. 75ECh. 2.4 - Prob. 76ECh. 2.4 - Prob. 77ECh. 2.4 - Prob. 78ECh. 2.4 - Prob. 79ECh. 2.4 - Prob. 80ECh. 2.4 - Prob. 81ECh. 2.4 - Prob. 82ECh. 2.4 - Prob. 83ECh. 2.4 - Prob. 84ECh. 2.4 - Prob. 85ECh. 2.4 - Prob. 86ECh. 2.4 - Prob. 87ECh. 2.4 - Prob. 88ECh. 2.4 - Prob. 89ECh. 2.4 - Prob. 90ECh. 2.4 - Prob. 91ECh. 2.5 - Prob. 92UYKCh. 2.5 - Prob. 93UYKCh. 2.5 - Prob. 94ECh. 2.5 - Prob. 95ECh. 2.5 - Prob. 96ECh. 2.5 - Prob. 97ECh. 2.5 - Prob. 98ECh. 2.5 - Prob. 99ECh. 2.5 - Prob. 100ECh. 2.5 - Prob. 101ECh. 2.5 - Prob. 102ECh. 2.5 - Prob. 103ECh. 2.5 - Prob. 104ECh. 2.5 - Prob. 105ECh. 2.5 - Prob. 106ECh. 2.5 - Prob. 107ECh. 2.5 - Prob. 108ECh. 2.5 - Prob. 109ECh. 2.5 - Prob. 110ECh. 2.5 - Prob. 112ECh. 2.5 - Prob. 113ECh. 2.5 - Prob. 114ECh. 2.6 - Prob. 115UYKCh. 2.6 - Prob. 116UYKCh. 2.6 - Prob. 117UYKCh. 2.6 - Prob. 118UYKCh. 2.6 - Prob. 119UYKCh. 2.6 - Prob. 120UYKCh. 2.6 - Prob. 121ECh. 2.6 - Prob. 122ECh. 2.6 - Prob. 123ECh. 2.6 - Prob. 124ECh. 2.6 - Prob. 125ECh. 2.6 - Prob. 126ECh. 2.6 - Prob. 127ECh. 2.6 - Prob. 128ECh. 2.6 - Prob. 129ECh. 2.6 - Prob. 130ECh. 2.6 - Prob. 131ECh. 2.6 - Prob. 132ECh. 2.7 - Prob. 133ECh. 2.7 - Prob. 134ECh. 2.7 - Prob. 135ECh. 2.7 - Prob. 136ECh. 2.7 - Prob. 137ECh. 2.7 - Prob. 138ECh. 2.7 - Prob. 139ECh. 2.7 - Prob. 140ECh. 2.7 - Prob. 141ECh. 2.7 - Prob. 142ECh. 2.7 - Prob. 143ECh. 2.7 - Prob. 144ECh. 2.7 - Prob. 145ECh. 2 - Prob. 146ECh. 2 - Prob. 147ECh. 2 - Prob. 148ECh. 2 - Prob. 149ECh. 2 - Prob. 150ECh. 2 - Prob. 151ECh. 2 - Prob. 152ECh. 2 - Prob. 153ECh. 2 - Prob. 154ECh. 2 - Prob. 155ECh. 2 - Prob. 156ECh. 2 - Prob. 157ECh. 2 - Prob. 158ECh. 2 - Prob. 159ECh. 2 - Prob. 160ECh. 2 - Prob. 161ECh. 2 - Prob. 162ECh. 2 - Prob. 163ECh. 2 - Prob. 164ECh. 2 - Prob. 165ECh. 2 - Prob. 166ECh. 2 - Prob. 167ECh. 2 - Prob. 168ECh. 2 - Prob. 169ECh. 2 - Prob. 170ECh. 2 - Prob. 171ECh. 2 - Prob. 172ECh. 2 - Prob. 173ECh. 2 - Prob. 174ECh. 2 - Prob. 175ECh. 2 - Prob. 176ECh. 2 - Prob. 177ECh. 2 - Prob. 178E
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Text book image
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Text book image
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
Text book image
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Text book image
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman
Correlation Vs Regression: Difference Between them with definition & Comparison Chart; Author: Key Differences;https://www.youtube.com/watch?v=Ou2QGSJVd0U;License: Standard YouTube License, CC-BY
Correlation and Regression: Concepts with Illustrative examples; Author: LEARN & APPLY : Lean and Six Sigma;https://www.youtube.com/watch?v=xTpHD5WLuoA;License: Standard YouTube License, CC-BY