
(a)
Interpretation:
The type of semiconductor formed when silicon combine with the given set of elements has to be determined.
Concept Introduction:
Semiconductors are substances that conduct electricity either by addition of an impurity or by the effects of temperature on it. Semiconductors electrically conductivity lies between conductor and insulator. Semiconductors have small energy gap between valence band and conduction band.
Addition of impurity to a semiconductor is termed as doping. Doping alters the conductivity of a semiconductor. The addition of an element having either more or less number of valence electrons than the natural semiconductor decides the combination as the following two types of semiconductor.
- n- type semiconductor: (conduction is due to movement of extra electrons)
The element added will have more valence electron than the natural semiconductor. Therefore, the extra electron from the added element resides in conduction band and increase the conductivity.
Example: Silicon (natural semiconductor) and Phosphorus
- p-type semiconductor: (conduction is due to movement of holes)
The element added will have less valence electron than the natural semiconductor. Here, instead of extra electron, there will be “holes” at the places, where a semiconductor is replaced by added element. A p-type semiconductor increases conductivity because the holes (effective positive charge; lies at valence band) move through the natural semiconductor rather than electrons.
Example: Silicon (natural semiconductor) and Gallium
(b)
Interpretation:
The type of semiconductor formed when silicon combine with the given set of elements has to be determined.
Concept Introduction:
Semiconductors are substances that conduct electricity either by addition of an impurity or by the effects of temperature on it. Semiconductors electrically conductivity lies between conductor and insulator. Semiconductors have small energy gap between valence band and conduction band.
Addition of impurity to a semiconductor is termed as doping. Doping alters the conductivity of a semiconductor. The addition of an element having either more or less number of valence electrons than the natural semiconductor decides the combination as the following two types of semiconductor.
- n- type semiconductor: (conduction is due to movement of extra electrons)
The element added will have more valence electron than the natural semiconductor. Therefore, the extra electron from the added element resides in conduction band and increase the conductivity.
Example: Silicon (natural semiconductor) and Phosphorus
- p-type semiconductor: (conduction is due to movement of holes)
The element added will have less valence electron than the natural semiconductor. Here, instead of extra electron, there will be “holes” at the places, where a semiconductor is replaced by added element. A p-type semiconductor increases conductivity because the holes (effective positive charge; lies at valence band) move through the natural semiconductor rather than electrons.
Example: Silicon (natural semiconductor) and Gallium

Want to see the full answer?
Check out a sample textbook solution
Chapter 24 Solutions
EBK CHEMISTRY: ATOMS FIRST
- (a) Draw the structures of A and B in the following reaction. (i) NaNH2, NH3(1) A + B (ii) H3O+arrow_forwardFor the reaction 2 N2O5(g) → 4 NO2(g) + O2(g), the following mechanism has been proposed: N2O5 →> NO₂+ NO3_(K1) NO2 + NO3 → N2O5 (k-1) NO2 + NO3 → → NO2 + O2 + NO (K2) NO + N2O5- NO2 + NO2 + NO2 (K3) d[N₂O5] __2k‚k₂[N2O5] Indicate whether the following rate expression is acceptable: dt k₁₁+ k₂arrow_forwardConsider the following decomposition reaction of N2O5(g): For the reaction 2 N2O5(g) → 4 NO2(g) + O2(g), the following mechanism has been proposed: N2O5 → NO2 + NO3 (K1) NO2 + NO3 → N2O5 (k-1) NO2 + NO3 → NO2 + O2 + NO (K2) NO + N2O5 → NO2 + NO2 + NO2 (K3) Indicate whether the following rate expression is acceptable: d[N2O5] = -k₁[N₂O₂] + K¸₁[NO₂][NO3] - K¸[NO₂]³ dtarrow_forward
- In a reaction of A + B to give C, another compound other than A, B or C may appear in the kinetic equation.arrow_forwardFor the reaction 2 N2O5(g) → 4 NO2(g) + O2(g), the following mechanism has been proposed: N2O5 →> NO₂+ NO3_(K1) NO2 + NO3 → N2O5 (k-1) NO2 + NO3 → → NO2 + O2 + NO (K2) NO + N2O5- NO2 + NO2 + NO2 (K3) d[N₂O5] __2k‚k₂[N2O5] Indicate whether the following rate expression is acceptable: dt k₁₁+ k₂arrow_forwardGiven the reaction R + Q → P, indicate the rate law with respect to R, with respect to P and with respect to P.arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





