
College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 24, Problem 9CQ
Without measuring its radius of curvature (which is not so easy to do), explain how you can experimentally determine the focal length of (a) a concave mirror, (b) a convex mirror. Your apparatus consists of viewing screens and an optical bench on which to mount the mirrors and measure distances.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
You want to fabricate a soft microfluidic chip like the one below. How would you go about
fabricating this chip knowing that you are targeting a channel with a square cross-sectional
profile of 200 μm by 200 μm. What materials and steps would you use and why? Disregard the
process to form the inlet and outlet.
Square Cross Section
1. What are the key steps involved in the fabrication of a semiconductor device.
2. You are hired by a chip manufacturing company, and you are asked to prepare a silicon wafer
with the pattern below. Describe the process you would use.
High Aspect
Ratio
Trenches
Undoped Si Wafer
P-doped Si
3. You would like to deposit material within a high aspect ratio trench. What approach would you
use and why?
4. A person is setting up a small clean room space to carry out an outreach activity to educate high
school students about patterning using photolithography. They obtained a positive photoresist, a
used spin coater, a high energy light lamp for exposure and ordered a plastic transparency mask
with a pattern on it to reduce cost. Upon trying this set up multiple times they find that the full
resist gets developed, and they are unable to transfer the pattern onto the resist. Help them
troubleshoot and find out why pattern of transfer has not been successful.
5. You are given a composite…
Two complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values.
Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all steps
Chapter 24 Solutions
College Physics (10th Edition)
Ch. 24 - If a spherical mirror is immersed in water, does...Ch. 24 - For what range of object positions does a concave...Ch. 24 - If a screen is placed at the location of a real...Ch. 24 - Is it possible to view a virtual image directly...Ch. 24 - Prob. 5CQCh. 24 - On a sunny day, you can use the suns rays and a...Ch. 24 - A person looks at her reflection in the concave...Ch. 24 - What happens to the image produced by a converging...Ch. 24 - Without measuring its radius of curvature (which...Ch. 24 - Without measuring its radii of curvature (which is...
Ch. 24 - A spherical air bubble in water can function as a...Ch. 24 - Optical telescopes having a principal mirror only...Ch. 24 - A ray from an object passes through a thin lens,...Ch. 24 - If a single lens forms a real image, we can...Ch. 24 - If a single lens forms a virtual image, we can...Ch. 24 - An object lies outside the focal port of a...Ch. 24 - An object lies outside the focal point of a...Ch. 24 - Prob. 6MCPCh. 24 - An object is placed a distance 2f away from a...Ch. 24 - In order to form an image with a converging lens...Ch. 24 - A ray from an object passes through a thin lens,...Ch. 24 - As you move an object from just outside to just...Ch. 24 - As you move an object from just outside to just...Ch. 24 - You have a shiny salad bowl with a spherical shape...Ch. 24 - A candle 4.85 cm tall is 39.2 cm to the left of a...Ch. 24 - Two plane mirrors form a 60 wedge as shown in...Ch. 24 - An object is placed between two plane mirrors...Ch. 24 - If you run away from a plane mirror at 2.40 m/s,...Ch. 24 - A concave spherical mirror has a radius of...Ch. 24 - A concave spherical mirror has a radius of...Ch. 24 - The diameter of Mars is 6794 km. and its minimum...Ch. 24 - A concave mirror has a radius of curvature of 34.0...Ch. 24 - Rearview mirror. A mirror on the passenger side of...Ch. 24 - Examining your image in a convex mirror whose...Ch. 24 - A coin is placed next to the convex side of a thin...Ch. 24 - Consider a concave mirror that has a focal length...Ch. 24 - A spherical, concave shaving mirror has a radius...Ch. 24 - An object 0.600 cm tall is placed 16.5 cm to the...Ch. 24 - Repeat the previous problem for the case in which...Ch. 24 - The thin glass shell shown in Figure 24.43 has a...Ch. 24 - Dental mirror. A dentist uses a curved mirror to...Ch. 24 - The left end of a long glass rod 6.00 cm in...Ch. 24 - Prob. 19PCh. 24 - The left end of a long glass rod 8.00 cm in...Ch. 24 - A large aquarium has portholes of thin transparent...Ch. 24 - Focus of the eye. The cornea of the eye has a...Ch. 24 - A speck of dirt is embedded 3.50 cm below the...Ch. 24 - A skin diver is 2.0 m below the surface of a lake....Ch. 24 - A person is swimming 1.0 m beneath the surface of...Ch. 24 - A converging lens with a focal length of 7.00 cm...Ch. 24 - A converging lens with a focal length of 90.0 cm...Ch. 24 - You are standing 0.50 m in front of a lens that...Ch. 24 - Figure 24.44 shows an object and its image formed...Ch. 24 - Set up: 1s+1s=1f. The type of lens determines the...Ch. 24 - Figure 24.46 shows an object and its image formed...Ch. 24 - The two surfaces of a plastic converging lens have...Ch. 24 - A lens has an index of refraction of 1.7 and a...Ch. 24 - Set Up: Use 1f=(n1)(1R11R2) to calculate f and...Ch. 24 - The lens of the eye. The crystalline lens of the...Ch. 24 - The cornea as a simple lens. The cornea behaves as...Ch. 24 - An insect 3.75 mm tall is placed 22.5 cm to the...Ch. 24 - Two double-convex thin lenses each have surfaces...Ch. 24 - A converging meniscus lens (see Figure 24.30) with...Ch. 24 - A converging lens with a focal length of 12.0 cm...Ch. 24 - Combination of lenses, I. When two lenses are used...Ch. 24 - Set Up: Apply 1s+1s=1f with f = 35.0 cm. We know...Ch. 24 - Combination of lenses, II. Two thin lenses with a...Ch. 24 - A lens forms a real image that is 214 cm away from...Ch. 24 - A converging lens has a focal length of 14.0 cm...Ch. 24 - A converging lens forms an image of an...Ch. 24 - A diverging lens with a focal length of 48.0 cm...Ch. 24 - When an object is 16.0 cm from a lens, an image is...Ch. 24 - Figure 24.48 shows a small plant near a thin lens....Ch. 24 - Figure 24.49 shows a small plant near a thin lens....Ch. 24 - Figure 24.50 shows a small plant near a thin lens....Ch. 24 - Prob. 52GPCh. 24 - Where must you place an object in front of a...Ch. 24 - Set Up: Use 1s+1s=1f. A plot of 1f versus 1s...Ch. 24 - A concave mirror is to form an image of the...Ch. 24 - A lens has one convex surface of radius 6.00 cm...Ch. 24 - A 3 80-nm-tall object 24.0 cm from the center of...Ch. 24 - A lensmaker wants to make a magnifying glass from...Ch. 24 - An object is placed 18.0 cm from a screen, (a) At...Ch. 24 - In the text, Equations 24.4 and 24.7 were derived...Ch. 24 - A lens in a liquid. A lens obeys Snell s law,...Ch. 24 - Refraction of liquids. The focal length of a...Ch. 24 - Refraction of liquids. The focal length of a...Ch. 24 - If you place a concave mirror with a focal length...Ch. 24 - Refraction of liquids. The focal length of a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. Galileos contributions to astronomy in...
Cosmic Perspective Fundamentals
48. Four solutions of unknown NaOH concentration are titrated with solutions of HCl. The following table lists ...
Introductory Chemistry (6th Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology with Physiology (5th Edition)
Which coastal area experiences the largest tidal range difference in height between the high tide and low tide?...
Applications and Investigations in Earth Science (9th Edition)
2. Whether an allele is dominant or recessive depends on
a. how common the allele is, relative to other alleles...
Campbell Biology: Concepts & Connections (9th Edition)
All of the following terms can appropriately describe humans except: a. primary consumer b. autotroph c. hetero...
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An electromagnetic wave is traveling through vacuum in the positive x direction. Its electric field vector is given by E=E0sin(kx−ωt)j^,where j^ is the unit vector in the y direction. If B0 is the amplitude of the magnetic field vector, find the complete expression for the magnetic field vector B→ of the wave. What is the Poynting vector S(x,t), that is, the power per unit area associated with the electromagnetic wave described in the problem introduction? Give your answer in terms of some or all of the variables E0, B0, k, x, ω, t, and μ0. Specify the direction of the Poynting vector using the unit vectors i^, j^, and k^ as appropriate. Please explain all stepsarrow_forwardAnother worker is performing a task with an RWL of only 9 kg and is lifting 18 kg, giving him an LI of 2.0 (high risk). Questions:What is the primary issue according to NIOSH?Name two factors of the RWL that could be improved to reduce risk.If the horizontal distance is reduced from 50 cm to 30 cm, how does the HM change and what effect would it have?arrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for z1z2∗. Find r and θ for z1/z2∗? Find r and θ for (z1−z2)∗/z1+z2∗. Find r and θ for (z1−z2)∗/z1z2∗ Please explain all steps, Thank youarrow_forward
- An ac series circuit consists of a voltage source of frequency 60 Hz and voltage amplitude V, a 505-Ω resistor, and a capacitor of capacitance 7.2 μF. What must be the source voltage amplitude V for the average electrical power consumed in the resistor to be 236 W? There is no inductance in the circuit.arrow_forwardAn L−R−C series circuit has R= 280 Ω . At the frequency of the source, the inductor has reactance XLL= 905 Ω and the capacitor has reactance XC= 485 Ω . The amplitude of the voltage across the inductor is 445 V . What is the amplitude of the voltage across the resistor and the capacitor? What is the voltage amplitude of the source? What is the rate at which the source is delivering electrical energy to the circuit?arrow_forwardA 0.185 H inductor is connected in series with a 98.5 Ω resistor and an ac source. The voltage across the inductor is vL=−(12.5V)sin[(476rad/s)t]vL. Derive an expression for the voltage vR across the resistor. Express your answer in terms of the variables L, R, VL (amplitude of the voltage across the inductor), ω, and t. What is vR at 2.13 ms ? Please explain all stepsarrow_forward
- A worker lifts a box under the following conditions:Horizontal distance (H): 30 cmInitial height (V): 60 cmVertical travel (D): 50 cmTorso rotation (A): 30°Frequency: 3 times/minute for 1 hourGrip: Good Question:What is the RWL for this task?What does this value mean in terms of occupational safety?arrow_forwardCan someone helparrow_forwardCan someone help mearrow_forward
- 3. Four identical small masses are connected in a flat perfect square. Rank the relative rotational inertias (IA, IB, IC) about the three axes of rotation shown. Axes A and B are in the plane of the square, and axis C is perpendicular to the plane, through mass m1. ΙΑ IB m2 m1 m3 Ic m4 (a) IAarrow_forwardConsider the circuit shown in the figure below. (Assume L = 5.20 m and R2 = 440 Ω.) (a) When the switch is in position a, for what value of R1 will the circuit have a time constant of 15.4 µs? (b) What is the current in the inductor at the instant the switch is thrown to position b?arrow_forwardCan someone helparrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
AP Physics 2 - Geometric Optics: Mirrors and Lenses - Intro Lesson; Author: N. German;https://www.youtube.com/watch?v=unT297HdZC0;License: Standard YouTube License, CC-BY