Interpretation:
The compound A should be identified.
Concept introduction:
The Fischer projection: Fischer projection is a two-dimensional representation of a three-dimensional organic molecule by projection. It is mainly proposed for the representation of carbohydrate chemistry.
The orientation of the carbon atoms in a molecule is arranged vertically from top to bottom.
The C1 carbon is at the top of the orientation, the hydrogen and hydroxyl groups are placed in right and left side of the orientation. D and L form are depends on the arrangement of the hydroxyl group. If the hydroxyl group is in the right side of the molecule in the penultimate (next-to-last) carbon is called as D sugar, if the If the hydroxyl group is in the left side of the molecule in the penultimate (next-to-last) carbon is called as L sugar.
Reducing sugar: Sugars that contain
Epimer: Epimer is one of a pair of stereoisomers. The two isomers differ in configuration at only one stereogenic center.
The Wohl degradation: D-glucose is reaction with hydroxylamine and sodium methoxide which yields oxime then resultant oxime is reaction with acetic anhydride in acetic acid with sodium acetate which afforded pentaacetyl glycononitrile. In this reaction step the oxime is converted into the nitrile with simultaneous conversion of all the alcohol groups to acetate groups. Finally, sodium methoxide in methanol is added to the reaction which yields the final degradation compound.
Cahn–Ingold–Prelog system: The first priority goes to the atom in a molecule whose
Draw a curve from the first-priority substituent through the second-priority substituent and then through the third.
If the curve goes clockwise, the chiral center is designated R; if the curve goes counterclockwise, the chiral center is designated S.
Ethylation: carbohydrates ethylated by using ethyl iodide and silver oxide.
To find: The structure of compound A.
Want to see the full answer?
Check out a sample textbook solutionChapter 24 Solutions
ORGANIC CHEMISTRY-NEXTGEN+BOX (2 SEM.)
- Please correct answer and don't use hand ratingarrow_forwardConvert the following structures into a chair representation. Then conduct a chair flip. Cl a. b. C\.... оarrow_forwardAktiv Learning App Cengage Digital Learning Part of Speech Table for Assign x o Mail-Karen Ento-Outlook * + app.aktiv.com Your Aktiv Learning trial expires on 02/06/25 at 01:15 PM Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. Problem 17 of 30 Drawing Arrows heat 4 O M B D 5x H H Und Settings H Done :0: H Jararrow_forward
- Gramicidin A can adopt more than one structure; NMR spectroscopy has revealed an “end-to-end” dimer form, and x-ray crystallography has revealed an “anti-parallel double- helical” form. Briefly outline and describe an experimentalapproach/strategy to investigate WHICH configuration (“end-to-end dimer” vs “anti-paralleldouble helical”) gramicidin adopts in an actual lipid bilayer.arrow_forwardDon't used hand raitingarrow_forwardCHEM2323 Problem 2-24 Tt O e: ל Predict the product(s) of the following acid/base reactions. Draw curved arrows to show the formation and breaking of bonds. If the bonds needed are not drawn out, you should redraw them. + BF3 (a) (b) HI + (c) OH -BF Problem 2-25 Use curved arrows and a proton (H+) to draw the protonated form of the following Lewis bases. Before starting, add all missing lone pairs. (a) (b) :0: (c) N 1 CHEM2323 PS CH02 Name:arrow_forward
- CHEM2323 Problem 2-26 Tt O PS CH02 Name: Use the curved-arrow formalism to show how the electrons flow in the resonance form on the left to give the one on the right. (Draw all lone pairs first) (a) NH2 NH2 + (b) Problem 2-27 Double bonds can also act like Lewis bases, sharing their electrons with Lewis acids. Use curved arrows to show how each of the following double bonds will react with H-Cl and draw the resulting carbocation. (a) H2C=CH2 (b) (c) Problem 2-28 Identify the most electronegative element in each of the following molecules: (a) CH2FCI F Problem 2-29 (b) FCH2CH2CH2Br (c) HOCH2CH2NH2 (d) CH3OCH2Li F 0 0 Use the electronegativity table in Figure 2.3 to predict which bond in the following pairs is more polar and indicate the direction of bond polarity for each compound. (a) H3C-Cl or Cl-CI (b) H3C-H or H-CI (c) HO-CH3 or (CH3)3Si-CH3 (d) H3C-Li or Li-OHarrow_forwardDon't used hand raitingarrow_forwardDon't used hand raitingarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY