
Concept explainers
(a)
To find: The comparison of two predicted
(a)

Answer to Problem 72E
Solution: The predicted dominant arm strength for a baseball player is
Explanation of Solution
Calculation: It is noted from the referred Exercises 2.70 and 2.71 that the predicted mean strength of the dominant arm
The difference in the two predicted mean strengths is calculated as:
Therefore, the difference in the mean strengths of a baseball and a non-baseball player is positive. This implies that the predicted dominant arm strength for a baseball player, who uses exercise strength, is greater than the predicted dominant arm strength for a baseball player, who uses control more than the exercise strength. Thus, it can be said that
(b)
To explain: The inference for the difference in the two predicted mean strengths.
(b)

Answer to Problem 72E
Solution: There is a positive impact of the baseball throwing exercise over control as the difference in the mean arm strengths of the baseball player and a non-baseball player is positive.
Explanation of Solution
(c)
Section 1
To find: The predicted dominant arm strengths for non-dominant strengths
(c)
Section 1

Answer to Problem 72E
Solution: The results obtained are represented in the following table:
Dominant arm Strength |
|||
Non-Baseball Player |
Baseball Player |
||
Non-Dominant Arm Strength |
|||
Explanation of Solution
Calculation: The linear regression equations for a non-baseball player is:
and for a baseball player is:
From the above part (a), the dominant arm strengths when the non-dominant strength is
The dominant arm strengths provided the non-dominant arm strength as
For a non-baseball player, it is represented as
For a baseball player, it is represented as
The dominant arm strengths provided the non-dominant arm strength as
For a non-baseball player, it is represented as
For a baseball player, it is represented as
The above results obtained can be represented in the form of a table as follows:
Dominant arm Strength |
|||
Non-Baseball Player |
Baseball Player |
||
Non-Dominant Arm Strength |
|||
Section 2:
To find: The differences in the respective arm strengths.
Section 2:

Answer to Problem 72E
Solution: The differences are
Explanation of Solution
Calculation: The arm strengths for the non-dominant arm strengths
Dominant arm Strength |
|||
Non-Baseball Player |
Baseball Player |
||
Non-Dominant Arm Strength |
|||
The difference in the arm strengths of baseball and the non-baseball players are calculated as follows:
For non-dominant arm strength
For non-dominant arm strength
Hence, the differences are
Section 3:
To find: A table for the results of the three calculations.
Section 3:

Answer to Problem 72E
Solution: The resultant table is obtained as follows:
Dominant arm Strength |
||||
Non-Baseball Player |
Baseball Player |
Differences |
||
Non-Dominant Arm Strength |
||||
Explanation of Solution
Also,
The differences in the estimated strengths have been calculated as:
where,
The above information can be represented in the form of a table as follows:
Dominant arm Strength |
||||
Non-Baseball Player |
Baseball Player |
Differences |
||
Non-Dominant Arm Strength |
||||
(d)
Section 1:
To explain: The summary of results obtained in part (c) of exercise 2.72.
(d)
Section 1:

Answer to Problem 72E
Solution: The results show that the baseball throwing exercise has resulted in an improvement in the dominant arm strengths of the baseball players as compared to the non-baseball players for all the three cases. That is, the difference between the two is positive for all the three cases.
Explanation of Solution
Dominant arm Strength |
||||
Non-Baseball Player |
Baseball Player |
Difference |
||
Non-Dominant Arm Strength |
||||
From the table obtained, it is ascertained that the difference in the dominant arm strengths of baseball and the non-baseball players for all the three cases of non-dominant arm strengths as
Section 2:
To explain: The reason for the non-similarity of the three differences obtained.
Section 2:

Answer to Problem 72E
Solution: The non-similarity is due to a positive relation between the dominant arm strength and the non-dominant arm strength. The more the value of non-dominant arm strength, the more will be the dominant arm strength and hence, the greater will be the difference.
Explanation of Solution
respectively. The point to be noted here is that when the non-dominant arm strength increases, the value of the dominant arm strength also improves, thus, the difference in the dominant arm strengths of baseball and the non-baseball players also improves. That is, there is a positive relation amongst the non-dominant arm strength and the difference thus obtained. The more the value of non-dominant strength, the more will be the dominant strength and the more will be the difference between the two. That is why, there is a non-similarity of the differences in all the three cases.
Want to see more full solutions like this?
Chapter 2 Solutions
Introduction to the Practice of Statistics
- Pls help asaparrow_forwardSolve the following LP problem using the Extreme Point Theorem: Subject to: Maximize Z-6+4y 2+y≤8 2x + y ≤10 2,y20 Solve it using the graphical method. Guidelines for preparation for the teacher's questions: Understand the basics of Linear Programming (LP) 1. Know how to formulate an LP model. 2. Be able to identify decision variables, objective functions, and constraints. Be comfortable with graphical solutions 3. Know how to plot feasible regions and find extreme points. 4. Understand how constraints affect the solution space. Understand the Extreme Point Theorem 5. Know why solutions always occur at extreme points. 6. Be able to explain how optimization changes with different constraints. Think about real-world implications 7. Consider how removing or modifying constraints affects the solution. 8. Be prepared to explain why LP problems are used in business, economics, and operations research.arrow_forwardged the variance for group 1) Different groups of male stalk-eyed flies were raised on different diets: a high nutrient corn diet vs. a low nutrient cotton wool diet. Investigators wanted to see if diet quality influenced eye-stalk length. They obtained the following data: d Diet Sample Mean Eye-stalk Length Variance in Eye-stalk d size, n (mm) Length (mm²) Corn (group 1) 21 2.05 0.0558 Cotton (group 2) 24 1.54 0.0812 =205-1.54-05T a) Construct a 95% confidence interval for the difference in mean eye-stalk length between the two diets (e.g., use group 1 - group 2).arrow_forward
- An article in Business Week discussed the large spread between the federal funds rate and the average credit card rate. The table below is a frequency distribution of the credit card rate charged by the top 100 issuers. Credit Card Rates Credit Card Rate Frequency 18% -23% 19 17% -17.9% 16 16% -16.9% 31 15% -15.9% 26 14% -14.9% Copy Data 8 Step 1 of 2: Calculate the average credit card rate charged by the top 100 issuers based on the frequency distribution. Round your answer to two decimal places.arrow_forwardPlease could you check my answersarrow_forwardLet Y₁, Y2,, Yy be random variables from an Exponential distribution with unknown mean 0. Let Ô be the maximum likelihood estimates for 0. The probability density function of y; is given by P(Yi; 0) = 0, yi≥ 0. The maximum likelihood estimate is given as follows: Select one: = n Σ19 1 Σ19 n-1 Σ19: n² Σ1arrow_forward
- Please could you help me answer parts d and e. Thanksarrow_forwardWhen fitting the model E[Y] = Bo+B1x1,i + B2x2; to a set of n = 25 observations, the following results were obtained using the general linear model notation: and 25 219 10232 551 XTX = 219 10232 3055 133899 133899 6725688, XTY 7361 337051 (XX)-- 0.1132 -0.0044 -0.00008 -0.0044 0.0027 -0.00004 -0.00008 -0.00004 0.00000129, Construct a multiple linear regression model Yin terms of the explanatory variables 1,i, x2,i- a) What is the value of the least squares estimate of the regression coefficient for 1,+? Give your answer correct to 3 decimal places. B1 b) Given that SSR = 5550, and SST=5784. Calculate the value of the MSg correct to 2 decimal places. c) What is the F statistics for this model correct to 2 decimal places?arrow_forwardCalculate the sample mean and sample variance for the following frequency distribution of heart rates for a sample of American adults. If necessary, round to one more decimal place than the largest number of decimal places given in the data. Heart Rates in Beats per Minute Class Frequency 51-58 5 59-66 8 67-74 9 75-82 7 83-90 8arrow_forward
- can someone solvearrow_forwardQUAT6221wA1 Accessibility Mode Immersiv Q.1.2 Match the definition in column X with the correct term in column Y. Two marks will be awarded for each correct answer. (20) COLUMN X Q.1.2.1 COLUMN Y Condenses sample data into a few summary A. Statistics measures Q.1.2.2 The collection of all possible observations that exist for the random variable under study. B. Descriptive statistics Q.1.2.3 Describes a characteristic of a sample. C. Ordinal-scaled data Q.1.2.4 The actual values or outcomes are recorded on a random variable. D. Inferential statistics 0.1.2.5 Categorical data, where the categories have an implied ranking. E. Data Q.1.2.6 A set of mathematically based tools & techniques that transform raw data into F. Statistical modelling information to support effective decision- making. 45 Q Search 28 # 00 8 LO 1 f F10 Prise 11+arrow_forwardStudents - Term 1 - Def X W QUAT6221wA1.docx X C Chat - Learn with Chegg | Cheg X | + w:/r/sites/TertiaryStudents/_layouts/15/Doc.aspx?sourcedoc=%7B2759DFAB-EA5E-4526-9991-9087A973B894% QUAT6221wA1 Accessibility Mode பg Immer The following table indicates the unit prices (in Rands) and quantities of three consumer products to be held in a supermarket warehouse in Lenasia over the time period from April to July 2025. APRIL 2025 JULY 2025 PRODUCT Unit Price (po) Quantity (q0)) Unit Price (p₁) Quantity (q1) Mineral Water R23.70 403 R25.70 423 H&S Shampoo R77.00 922 R79.40 899 Toilet Paper R106.50 725 R104.70 730 The Independent Institute of Education (Pty) Ltd 2025 Q Search L W f Page 7 of 9arrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman





