(a)
The intensity of light on the absorbing plate.
(a)
Answer to Problem 67P
The intensity of light on the absorbing plate is
Explanation of Solution
Given info: The diameter of the circular mirror is
The formula to calculate the power is,
Here,
Substitute
The formula to calculate the intensity on plate is,
Here,
Substitute
Conclusion:
Therefore, the intensity of light on the absorbing plate is
(b)
The maximum magnitude of the electric field.
(b)
Answer to Problem 67P
The maximum magnitude of the electric field is
Explanation of Solution
Given info: The diameter of the circular mirror is
The formula to calculate the intensity is,
Here,
Rewrite the equation (2) to find the value of
Substitute
Thus, the maximum magnitude of the electric field is
Conclusion:
Therefore, the maximum magnitude of the electric field is
(c)
The maximum magnitude of the magnetic field.
(c)
Answer to Problem 67P
The maximum magnitude of the electric field is
Explanation of Solution
Given info: The diameter of the circular mirror is
The expression for the magnetic field is,
Here,
Substitute
Conclusion:
Therefore, the maximum magnitude of the electric field is
(d)
The time interval to bring the water to its boiling point.
(d)
Answer to Problem 67P
The time interval to bring the water to its boiling point is
Explanation of Solution
Given info: The diameter of the circular mirror is
The formula to calculate the power consumed in phase change is,
Here,
The formula to calculate the mass is,
Here,
Substitute
The value of the power consumed in heating is,
Substitute
Substitute
Thus, the time interval to bring the water to its boiling point is
Conclusion:
Therefore, the time interval to bring the water to its boiling point is
Want to see more full solutions like this?
Chapter 24 Solutions
Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
- Calculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forwardNo chatgpt pls will upvotearrow_forwardCan you help me solve the questions pleasearrow_forward
- Can you help me solve these questions please so i can see how to do itarrow_forwardHow can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward
- 2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forwardFrom number 2 and 3 I just want to show all problems step by step please do not short cut look for formulaarrow_forwardPlz don't use chatgpt pls will upvotearrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning