
The classification of waves of frequencies

Answer to Problem 38P
The classification of waves on the basis of frequency is shown below.
Frequency,
|
Wavelength, | Classification | ||
|
| Radio | ||
|
|
Radio | ||
|
|
Radio | ||
|
|
Microwave | ||
|
|
Infrared | ||
|
|
Ultraviolet | ||
|
|
X-ray | ||
|
|
Gamma ray | ||
|
|
Gamma ray |
The classification of waves on the basis of wavelength is shown below.
Wavelength, |
Frequency,
| Classification | ||
|
| Radio | ||
|
|
Radio | ||
|
|
Microwave | ||
|
|
Infrared | ||
|
|
Ultraviolet/ X-ray | ||
|
|
X-ray/Gamma ray | ||
|
|
Gamma ray | ||
|
|
Gamma ray |
Explanation of Solution
The formula to calculate the wavelength is,
Here,
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
From the above calculation, the table for the wavelength can be deduces and the respective classification of waves is shown.
Frequency,
|
Wavelength, | Classification | ||
|
| Radio | ||
|
|
Radio | ||
|
|
Radio | ||
|
|
Microwave | ||
|
|
Infrared | ||
|
|
Ultraviolet | ||
|
|
X-ray | ||
|
|
Gamma ray | ||
|
|
Gamma ray |
The formula to calculate the frequency is,
Here,
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
From the above calculation the table for the frequency can be deduces and the respective classification of waves is shown below.
Wavelength, |
Frequency,
| Classification | ||
|
| Radio | ||
|
|
Radio | ||
|
|
Microwave | ||
|
|
Infrared | ||
|
|
Ultraviolet/ X-ray | ||
|
|
X-ray/Gamma ray | ||
|
|
Gamma ray | ||
|
|
Gamma ray |
Conclusion:
Therefore, the table of classification of waves with the frequencies is shown below.
Frequency,
|
Wavelength, | Classification | ||
|
| Radio | ||
|
|
Radio | ||
|
|
Radio | ||
|
|
Microwave | ||
|
|
Infrared | ||
|
|
Ultraviolet | ||
|
|
X-ray | ||
|
|
Gamma ray | ||
|
|
Gamma ray |
Therefore, the table of classification of waves with the wavelengths is shown below.
Wavelength, |
Frequency,
| Classification | ||
|
| Radio | ||
|
|
Radio | ||
|
|
Microwave | ||
|
|
Infrared | ||
|
|
Ultraviolet/ X-ray | ||
|
|
X-ray/Gamma ray | ||
|
|
Gamma ray | ||
|
|
Gamma ray |
Want to see more full solutions like this?
Chapter 24 Solutions
Principles of Physics: A Calculus-Based Text, Hybrid (with Enhanced WebAssign Printed Access Card)
- ••63 SSM www In the circuit of Fig. 27-65, 8 = 1.2 kV, C = 6.5 µF, R₁ S R₂ R3 800 C H R₁ = R₂ = R3 = 0.73 MQ. With C completely uncharged, switch S is suddenly closed (at t = 0). At t = 0, what are (a) current i̟ in resistor 1, (b) current 2 in resistor 2, and (c) current i3 in resistor 3? At t = ∞o (that is, after many time constants), what are (d) i₁, (e) i₂, and (f) iz? What is the potential difference V2 across resistor 2 at (g) t = 0 and (h) t = ∞o? (i) Sketch V2 versus t between these two extreme times. Figure 27-65 Problem 63.arrow_forwardThor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. Thor's escape velocity is 33532.9 rad/s, the angular velocity is 8055.5 rad/s^2. While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? the hammer has a total mass of 20.0kg.arrow_forwardIf the room’s radius is 16.2 m, at what minimum linear speed does Quicksilver need to run to stay on the walls without sliding down? Assume the coefficient of friction between Quicksilver and the wall is 0.236.arrow_forward
- In the comics Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. A) If the distance from the end of the strap to the center of the hammer is 0.334 m, what angular velocity does Thor need to spin his hammer at to reach escape velocity? b) If the hammer starts from rest what angular acceleration does Thor need to reach that angular velocity in 4.16 s? c) While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? The hammer has a total mass of 20.0kg.arrow_forwardThe car goes from driving straight to spinning at 10.6 rev/min in 0.257 s with a radius of 12.2 m. The angular accleration is 4.28 rad/s^2. During this flip Barbie stays firmly seated in the car’s seat. Barbie has a mass of 58.0 kg, what is her normal force at the top of the loop?arrow_forwardConsider a hoop of radius R and mass M rolling without slipping. Which form of kinetic energy is larger, translational or rotational?arrow_forward
- A roller-coaster vehicle has a mass of 571 kg when fully loaded with passengers (see figure). A) If the vehicle has a speed of 22.5 m/s at point A, what is the force of the track on the vehicle at this point? B) What is the maximum speed the vehicle can have at point B, in order for gravity to hold it on the track?arrow_forwardThis one wheeled motorcycle’s wheel maximum angular velocity was about 430 rev/min. Given that it’s radius was 0.920 m, what was the largest linear velocity of the monowheel?The monowheel could not accelerate fast or the rider would start spinning inside (this is called "gerbiling"). The maximum angular acceleration was 10.9 rad/s2. How long, in seconds, would it take it to hit maximum speed from rest?arrow_forwardIf points a and b are connected by a wire with negligible resistance, find the magnitude of the current in the 12.0 V battery.arrow_forward
- Consider the two pucks shown in the figure. As they move towards each other, the momentum of each puck is equal in magnitude and opposite in direction. Given that v kinetic energy of the system is converted to internal energy? 30.0° 130.0 = green 11.0 m/s, and m blue is 25.0% greater than m 'green' what are the final speeds of each puck (in m/s), if 1½-½ t thearrow_forwardConsider the blocks on the curved ramp as seen in the figure. The blocks have masses m₁ = 2.00 kg and m₂ = 3.60 kg, and are initially at rest. The blocks are allowed to slide down the ramp and they then undergo a head-on, elastic collision on the flat portion. Determine the heights (in m) to which m₁ and m2 rise on the curved portion of the ramp after the collision. Assume the ramp is frictionless, and h 4.40 m. m2 = m₁ m hm1 hm2 m iarrow_forwardA 3.04-kg steel ball strikes a massive wall at 10.0 m/s at an angle of 0 = 60.0° with the plane of the wall. It bounces off the wall with the same speed and angle (see the figure below). If the ball is in contact with the wall for 0.234 s, what is the average force exerted by the wall on the ball? magnitude direction ---Select--- ✓ N xarrow_forward
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax





