Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
4th Edition
ISBN: 9780134110646
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 24, Problem 47EAP
FIGURE P24.47 shows an infinitely wide conductor parallel
to and distance d from an infinitely wide plane of charge with
surface charge density
regions 1 to 4?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two 1.20m nonconducting wires form a right angle. One segment has charge q1=4.0 nC uniformly distributed along its length, the other segment has charge q2 = –6.0 nC uniformly distributed along its length. Point P lies on the central axis of each wire and is 60.0 cm apart.
a. The horizontal component of the net electric field at point P is:______N/C. in i or -i.
b. The vertical component of the net electric field at point P is:______ N/C. in j or -j.
c. The magnitude of the net electric field at point P is:______N/C.
d.its direction measured with respect to the x-axis is:_____.
Human nerve cells have a net negative charge and the material
in the interior of the cell is a good conductor. If a cell has a net
charge of -7.52 pC,
a. what are the magnitude and direction (inward or outward) of
the net flux through the cell boundary?
b. what is the volume charge density passing through the cell?
Assume that the portion of the cell in question is spherical
with radius r 1.2 × 10¯6m.
A total charge of Q is uniformly distributed along a line, which extends along the x- axis from x=0 to x=L. What is the electric field due to this line of charge at a point P, which is on the x axis at x=a. Your answer should be a symbolic expression that only depends on the variables k, Q, a, and L. What does your expression reduce to when a≫L (far-field limit)?
Chapter 24 Solutions
Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
Ch. 24 - Suppose you have the uniformly charged cube in...Ch. 24 - FIGURE Q24.2 shows cross sections of...Ch. 24 - The square and circle in FIGURE Q24.3 are in the...Ch. 24 - Prob. 4CQCh. 24 - Prob. 5CQCh. 24 - What is the electric flux through each of the...Ch. 24 - Prob. 7CQCh. 24 - The two spheres in FIGURE Q24.8 on the next page...Ch. 24 - The sphere and ellipsoid in FIGURE Q24.9 surround...Ch. 24 - A small, metal sphere hangs by an insulating...
Ch. 24 - l. FIGURE EX24.1 shows two cross sections of two...Ch. 24 - FIGURE EX24.2 shows a cross section of two...Ch. 24 - FIGURE EX24.3 shows a cross section of two...Ch. 24 - The electric field is constant over each face of...Ch. 24 - The electric field is constant over each face of...Ch. 24 - The cube in FIGURE EX24.6 contains negative...Ch. 24 - The cube in FIGURE EX24.7 contains negative...Ch. 24 - The cube in FIGURE EX24.8 contains no net charge....Ch. 24 - What is the electric flux through the surface...Ch. 24 - What is the electric flux through the surface...Ch. 24 - II The electric flux through the surface shown in...Ch. 24 - ]12. A 2.0cm3.0cm rectangle lies in the xy-plane....Ch. 24 - A 2.0cm3.0cm rectangle lies in the xz-plane. What...Ch. 24 - Prob. 14EAPCh. 24 - 15. A box with its edges aligned with
the...Ch. 24 - What is the net electric flux through the two...Ch. 24 - FIGURE EX24.17 shows three charges. Draw these...Ch. 24 - Prob. 18EAPCh. 24 - FIGURE EX24.19 shows three Gaussian surfaces and...Ch. 24 - What is the net electric flux through the torus...Ch. 24 - What is the net electric flux through the cylinder...Ch. 24 - Prob. 22EAPCh. 24 - Prob. 23EAPCh. 24 - A spark occurs at the tip of a metal needle if the...Ch. 24 - The electric field strength just above one face of...Ch. 24 - The conducting box in FIGURE EX24.26 has been...Ch. 24 - FIGURE EX24.27 shows a hollow cavity within a...Ch. 24 - A thin, horizontal, 10-cm-diameter copper plate is...Ch. 24 - Prob. 29EAPCh. 24 - Prob. 30EAPCh. 24 - II A tetrahedron has an equilateral triangle base...Ch. 24 - Charges q1= —4Q and q2= +2Q are located at x = —a...Ch. 24 - Prob. 33EAPCh. 24 - A spherically symmetric charge distribution...Ch. 24 - A neutral conductor contains a hollow cavity in...Ch. 24 - Prob. 36EAPCh. 24 - 37. A 20-cm-radius ball is uniformly charged to 80...Ch. 24 - Prob. 38EAPCh. 24 - Prob. 39EAPCh. 24 - Prob. 40EAPCh. 24 - A hollow metal sphere has 6 cm and 10 cm inner and...Ch. 24 - Prob. 42EAPCh. 24 - Find the electric field inside and outside a...Ch. 24 - Prob. 44EAPCh. 24 - Prob. 45EAPCh. 24 - Prob. 46EAPCh. 24 - FIGURE P24.47 shows an infinitely wide conductor...Ch. 24 - FIGURE P24.48 shows two very large slabs of metal...Ch. 24 - Prob. 49EAPCh. 24 - A very long, uniformly charged cylinder has radius...Ch. 24 - Prob. 51EAPCh. 24 - Prob. 52EAPCh. 24 - II A long cylinder with radius b and volume charge...Ch. 24 - A spherical shell has inner radius Rin, and outer...Ch. 24 - Prob. 55EAPCh. 24 - Newton's law of gravity and Coulomb's law are both...Ch. 24 - Prob. 57EAPCh. 24 - An infinite cylinder of radius R has a linear...Ch. 24 - Prob. 59EAPCh. 24 - A sphere of radius R has total charge Q. The...Ch. 24 - II A spherical ball of charge has radius R and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two positively charged spheres are shown in Figure P24.70. Sphere 1 has twice as much charge as sphere 2. If q = 6.55 nC, d = 0.250 m, and y = 1.25 m, what is the electric field at point A?arrow_forwardFigure P24.16 shows three charged particles arranged in the xy plane at the coordinates shown, with qA = qB = 3.30 nC and qC = 4.70 nC. What is the electric field due to these particles at the origin? FIGURE P24.16arrow_forwardA charged rod is curved so that it is part of a circle of radius R (Fig. P24.32). The excess positive charge Q is uniformly distributed on the rod. Find an expression for the electric field at point A in the plane of the curved rod in terms of the parameters given in the figure.arrow_forward
- The electric field due to a uniformly charged ring of radius R and total charge Q > 0 above its center. A small test charge q < 0 is released from z = ∞ with zero initial speed. The moment the test charge passes the center point, the radius of the circular ring is halved and its charge is doubled. What is the maximum distance that the test charge can move along the z-axis?arrow_forwardThere is a thick wall that extends infinitely in the yz plane. The wall is made of insulating material and has a thickness of D in the x direction. The wall has a charge density of +ρ. At an arbitrary distance x (where x is less than half of D), we need to find the magnitude of the electric field inside the wall.arrow_forwardA hollow conducting sphere has an inner radius of r1 = 1.4 cm and an outer radius of r2 = 3.5 cm. The sphere has a net charge of Q = 2.9 nC. a. What is the magnitude of the electric field in the cavity at the center of the sphere, in newtons per coulomb? b. What is the magnitude of the field, in newtons per coulomb, inside the conductor, when r1 < r < r2? c. What is the magnitude of the field, in newtons per coulomb, at a distance r = 7.6 m away from the center of the sphere?arrow_forward
- An infinitely long sheet of charge of width L lies in the xy-plane between x = -L/2 and x =L/2. The surface charge density is n. Derive an expression for the electric field E at height z above the centerline of the sheet. Express your answer in terms of some or all of the variables €0, 7, 7, L, z, and unit vector k. Use the 'unit vector' button to denote unit vectors in your answer. E =arrow_forwardAn infinite line charge has constant charge-per-unit-length λ. Surrounding the line charge is a cylindrical shell of radius R, and carrying a constant charge-per-unit area σ. Given λ, what must σ be in order to get 0 electric field for all points outside the cylindrical shell? For that σ, what is the electrical field in between the line of charge and shell?arrow_forward54.A solid, insulating sphere of radius a has a uniform GP charge density throuhu ts volume and a total charge QConcentric with this sphere is ucharged. con- ducting, hollow sphere whose inner and outer radii are band cas shown in Figure P24.54 (page 744). We wish to understand completely the charges and electric fields at all locations. (a) Find the charge contained within a sphere of radius r< a(From his value, find the mag nitude of the electric field for r< a. (c) what charge is contained witi a sphere of radius r when a (d) From this value, find the magnitude of the elec- tric field for rwhenaarrow_forwardFive charged particles are equally spaced around a semicircle of radius 100 mm, with one particle at each end of the semicircle and the remaining three spaced equally between the two ends. The semicircle lies in the region x<0 of an xy plane, such that the complete circle is centered on the origin. If each particle carries a charge of 6.00 nC , what is the electric field at the origin? Where could you put a single particle carrying a charge of -5.00 nC to make the electric field magnitude zero at the origin?arrow_forwardThe electric field E = C₁ấz + c₂ấy + c3ẩ₂ V/m at point P(0, 1, 0) given a point charge of 3 nC at the origin, a line charge distribution of 8 nC/m at x = 4, y = −3, and a plane charge of 0.5 nC/m² at z = 5. All coordinates are given in meters. Assume free space. What is the numerical value of c₁? What is the numerical value of c₂? What is the numerical value of c3?arrow_forwardCharge is uniformly distributed throughout a spherical insulating volume of radius R = 4.00 cm. The charge per unit volume is 8.16 μC/m³. Find the magnitude of the electric field at r = 10.0 cm. Enter a positive number if the field points radially out and negative if the field points radially in. i N/Carrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY