Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
4th Edition
ISBN: 9780134110646
Author: Randall D. Knight (Professor Emeritus)
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 24, Problem 2EAP
FIGURE EX24.2 shows a cross section of two concentric spheres. The inner sphere has a negative charge. The outer sphere has a positive charge larger in magnitude than the charge on the inner sphere. Draw this figure on your paper, then draw electric field vectors showing the shape of the electric field.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A pair of parallel conducting plates are given charges of equal magnitude but opposite sign to create a uniform electric field with magnitude 38 N/C. A rectangular surface with dimensions 4.2cm×1.2cm is located in the gap between the parallel plates.
a. What is the magnitude of the electric flux, in newton squared meters per coulomb, through the rectangular surface if it is parallel to the charged plates?
b. What is the magnitude of the electric flux, in newton squared meters per coulomb, through the rectangular surface if it is perpendicular to the charged plates?
c. What is the magnitude of the electric flux, in newton squared meters per coulomb, through the rectangular surface if the angle between its normal and the electric field is 25∘?
In the figure, the point charges are located at the corners of an equilateral triangle 29 cm on a side.
A. Find the magnitude of the electric field in N/C at the location of qa, given that qb = 10.8 μC and qc = –5.9 μC .
B. Find the direction of the electric field at qa in degrees above the negative x-axis with origin at qa.
C. What is the magnitude of the force in N on qa, given that qa = 1.7 nC?
D. What is the direction of the force on qa in degrees above the negative x-axis with origin at qa?
In the figure, the point charges are located at the corners of an equilateral triangle 29 cm on a side.
a. Find the magnitude of the electric field in N/C at the location of qa, given that qb = 9.5 μC and qc = –5.6 μC .
b. Find the direction of the electric field at qa in degrees above the negative x-axis with origin at qa.
c. What is the magnitude of the force in N on qa, given that qa = 1.4 nC?
d. What is the direction of the force on qa in degrees above the negative x-axis with origin at qa?
Chapter 24 Solutions
Student Workbook for Physics for Scientists and Engineers: A Strategic Approach, Vol 1. (Chs 1-21)
Ch. 24 - Suppose you have the uniformly charged cube in...Ch. 24 - FIGURE Q24.2 shows cross sections of...Ch. 24 - The square and circle in FIGURE Q24.3 are in the...Ch. 24 - Prob. 4CQCh. 24 - Prob. 5CQCh. 24 - What is the electric flux through each of the...Ch. 24 - Prob. 7CQCh. 24 - The two spheres in FIGURE Q24.8 on the next page...Ch. 24 - The sphere and ellipsoid in FIGURE Q24.9 surround...Ch. 24 - A small, metal sphere hangs by an insulating...
Ch. 24 - l. FIGURE EX24.1 shows two cross sections of two...Ch. 24 - FIGURE EX24.2 shows a cross section of two...Ch. 24 - FIGURE EX24.3 shows a cross section of two...Ch. 24 - The electric field is constant over each face of...Ch. 24 - The electric field is constant over each face of...Ch. 24 - The cube in FIGURE EX24.6 contains negative...Ch. 24 - The cube in FIGURE EX24.7 contains negative...Ch. 24 - The cube in FIGURE EX24.8 contains no net charge....Ch. 24 - What is the electric flux through the surface...Ch. 24 - What is the electric flux through the surface...Ch. 24 - II The electric flux through the surface shown in...Ch. 24 - ]12. A 2.0cm3.0cm rectangle lies in the xy-plane....Ch. 24 - A 2.0cm3.0cm rectangle lies in the xz-plane. What...Ch. 24 - Prob. 14EAPCh. 24 - 15. A box with its edges aligned with
the...Ch. 24 - What is the net electric flux through the two...Ch. 24 - FIGURE EX24.17 shows three charges. Draw these...Ch. 24 - Prob. 18EAPCh. 24 - FIGURE EX24.19 shows three Gaussian surfaces and...Ch. 24 - What is the net electric flux through the torus...Ch. 24 - What is the net electric flux through the cylinder...Ch. 24 - Prob. 22EAPCh. 24 - Prob. 23EAPCh. 24 - A spark occurs at the tip of a metal needle if the...Ch. 24 - The electric field strength just above one face of...Ch. 24 - The conducting box in FIGURE EX24.26 has been...Ch. 24 - FIGURE EX24.27 shows a hollow cavity within a...Ch. 24 - A thin, horizontal, 10-cm-diameter copper plate is...Ch. 24 - Prob. 29EAPCh. 24 - Prob. 30EAPCh. 24 - II A tetrahedron has an equilateral triangle base...Ch. 24 - Charges q1= —4Q and q2= +2Q are located at x = —a...Ch. 24 - Prob. 33EAPCh. 24 - A spherically symmetric charge distribution...Ch. 24 - A neutral conductor contains a hollow cavity in...Ch. 24 - Prob. 36EAPCh. 24 - 37. A 20-cm-radius ball is uniformly charged to 80...Ch. 24 - Prob. 38EAPCh. 24 - Prob. 39EAPCh. 24 - Prob. 40EAPCh. 24 - A hollow metal sphere has 6 cm and 10 cm inner and...Ch. 24 - Prob. 42EAPCh. 24 - Find the electric field inside and outside a...Ch. 24 - Prob. 44EAPCh. 24 - Prob. 45EAPCh. 24 - Prob. 46EAPCh. 24 - FIGURE P24.47 shows an infinitely wide conductor...Ch. 24 - FIGURE P24.48 shows two very large slabs of metal...Ch. 24 - Prob. 49EAPCh. 24 - A very long, uniformly charged cylinder has radius...Ch. 24 - Prob. 51EAPCh. 24 - Prob. 52EAPCh. 24 - II A long cylinder with radius b and volume charge...Ch. 24 - A spherical shell has inner radius Rin, and outer...Ch. 24 - Prob. 55EAPCh. 24 - Newton's law of gravity and Coulomb's law are both...Ch. 24 - Prob. 57EAPCh. 24 - An infinite cylinder of radius R has a linear...Ch. 24 - Prob. 59EAPCh. 24 - A sphere of radius R has total charge Q. The...Ch. 24 - II A spherical ball of charge has radius R and...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A charged rod is curved so that it is part of a circle of radius R (Fig. P24.32). The excess positive charge Q is uniformly distributed on the rod. Find an expression for the electric field at point A in the plane of the curved rod in terms of the parameters given in the figure.arrow_forwardThe infinite sheets in Figure P25.47 are both positively charged. The sheet on the left has a uniform surface charge density of 48.0 C/m2, and the one on the right has a uniform surface charge density of 24.0 C/m2. a. What are the magnitude and direction of the net electric field at points A, B, and C? b. What is the force exerted on an electron placed at points A, B, and C? FIGURE P25.47arrow_forwardA thin, semicircular wire of radius R is uniformly charged with total positive charge Q (Fig. P24.63). Determine the electric field at the midpoint O of the diameter.arrow_forward
- Two infinitely long, parallel lines of charge with linear charge densities 3.2 C/m and 3.2 C/m are separated by a distance of 0.50 m. What is the net electric field at points A, B, and C as shown in Figure P25.35? FIGURE P25.35arrow_forwardA When we find the electric field due to a continuous charge distribution, we imagine slicing that source up into small pieces, finding the electric field produced by the pieces, and then integrating to find the electric field. Lets see what happens if we break a finite rod up into a small number of finite particles. Figure P24.77 shows a rod of length 2 carrying a uniform charge Q modeled as two particles of charge Q/2. The particles are at the ends of the rod. Find an expression for the electric field at point A located a distance above the midpoint of the rod using each of two methods: a. modeling the rod with just two particles and b. using the exact expression E=kQy12+y2 c. Compare your results to the exact expression for the rod by finding the ratio of the approximate expression to the exact expression. FIGURE P24.77 Problems 77 and 78.arrow_forwardFigure P24.51 shows four small charged spheres arranged at the corners of a square with side d = 25.0 cm. a. What is the electric field at the location of the sphere with charge +2.00 nC? b. What is the total electric force exerted on the sphere with charge +2.00 nC by the other three spheres? FIGURE P24.51arrow_forward
- A positively charged disk of radius R = 0.0366 m and total charge 56.8 C lies in the xz plane, centered on the y axis (Fig. P24.35). Also centered on the y axis is a charged ring with the same radius as the disk and a total charge of 34.1 C. The ring is a distance d = 0.0050 m above the disk. Determine the electric field at the point P on the y axis, where P is y = 0.0100 m above the origin. FIGURE P24.35 Problems 35 and 36.arrow_forwardThree particles and three Gaussian surfaces are shown in Figure P25.24. All the surfaces are three-dimensional. Use the net electric flux through each surface indicated on the figure to find the charge of each particle. FIGURE P25.24arrow_forwardA very long, thin wire fixed along the x axis has a linear charge density of 3.2 C/m. a. Determine the electric field at point P a distance of 0.50 m from the wire. b. If there is a test charge q0 = 12.0 C at point P, what is the magnitude of the net force on this charge? In which direction will the test charge accelerate?arrow_forward
- Find an expression for the magnitude of the electric field at point A mid-way between the two rings of radius R shown in Figure P24.30. The ring on the left has a uniform charge q1 and the ring on the right has a uniform charge q2. The rings are separated by distance d. Assume the positive x axis points to the right, through the center of the rings. FIGURE P24.30 Problems 30 and 31.arrow_forwardA conducting sphere of radius r1 = 0.27 m has a total charge of Q = 2.6 μC. A second uncharged conducting sphere of radius r2 = 0.34 m connects to the first by a thin conducting wire. The spheres are separated by a very large distance compared to their size. a. What is the total charge on sphere two Q2 after they are connected, in coulombs? b. What is the surface charge density of the second sphere, σ2, after they are connected in coulombs per square meter?arrow_forwardA Van de Graaff generator has a 0.045 mC charge on its conducting spherical terminal. a.What is the magnitude of the electric field 2.7 m from the center of the terminal of the Van de Graaff generator? Since that distance is greater than the radius of the terminal, the field is the same as that due to the same charge concentrated at the center. Give your answer in newtons per coulomb. b. At this distance, what is the magnitude of the force that the field exerts on a 2.1 μC point charge on the Van de Graaff generator's belt? Give your answer in newtons.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY