![Physics for Scientists and Engineers with Modern Physics](https://www.bartleby.com/isbn_cover_images/9780136139225/9780136139225_largeCoverImage.gif)
Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780136139225
Author: Douglas C. Giancoli
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 24, Problem 28P
(II) A 0.50-μF and a 0.80-μF capacitor are connected in series to a 9.0-V battery. Calculate (a) the potential difference across each capacitor and (b) the charge on each. (c) Repeat parts (a) and (b) assuming the two capacitors are in parallel.
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
A car in a roller coaster moves along a track that consists of a sequence of ups and
downs. Let the x axis be parallel to the ground and the positive y axis point upward.
In the time interval from t 0 tot = = 4s, the trajectory of the car along a
certain section of the track is given by
7 = A(1 m/s)ti + A [(1 m/s³) t³ - 6(1 m/s²)t²]ĵ
where A is a positive dimensionless constant. At t
car ascending or descending?
=
2.0 S is the roller coaster
Ascending.
Descending.
need help on first part
its not 220
No chatgpt pls will upvote
Chapter 24 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 24.1 - Graphs for charge versus voltage are shown in Fig....Ch. 24.2 - Two circular plates of radius 5.0 cm are separated...Ch. 24.2 - What is the capacitance per unit length of a...Ch. 24.3 - Consider two identical capacitors C1 = C2 = 10 F....Ch. 24.5 - Return to the Chapter-Opening Question, page 628,...Ch. 24 - Suppose two nearby conductors carry the same...Ch. 24 - Suppose the separation of plates d in a...Ch. 24 - Suppose one of the plates of a parallel-plate...Ch. 24 - When a battery is connected to a capacitor, why do...Ch. 24 - Describe a sample method of measuring 0 using a...
Ch. 24 - Suppose three identical capacitors are connected...Ch. 24 - A large copper sheet of thickness is placed...Ch. 24 - The parallel plates of an isolated capacitor carry...Ch. 24 - How does the energy in a capacitor change if (a)...Ch. 24 - If the voltage across a capacitor is doubled, the...Ch. 24 - An isolated charged capacitor has horizontal...Ch. 24 - Suppose a battery remains connected to the...Ch. 24 - How does the energy stored in a capacitor change...Ch. 24 - For dielectrics consisting of polar molecules, how...Ch. 24 - A dielectric is pulled out from between the plates...Ch. 24 - We have seen that the capacitance C depends on the...Ch. 24 - What value might we assign to the dielectric...Ch. 24 - (I) The two plates of a capacitor hold +2800 C and...Ch. 24 - (I) How much charge flows from a 12.0-V battery...Ch. 24 - (I) The potential difference between two short...Ch. 24 - (I) The charge on a capacitor increases by 26 C...Ch. 24 - (II) A 7.7-F capacitor is charged by a 125-V...Ch. 24 - (II) An isolated capacitor C1 carries a charge Q0....Ch. 24 - (II) It takes 15 J of energy to move a 0.20-mC...Ch. 24 - (II) A 2.70-F capacitor is charged to 475 V and a...Ch. 24 - (II) Compact ultracapacitors with capacitance...Ch. 24 - (II) In a dynamic random access memory (DRAM)...Ch. 24 - (I) To make a 0.40-F capacitor, what area must the...Ch. 24 - (I) What is the capacitance per unit length (F/m)...Ch. 24 - (I) Determine the capacitance of the Earth,...Ch. 24 - (II) Use Gausss law to show that E=0 inside the...Ch. 24 - (II) Dry air will break down if the electric field...Ch. 24 - (II) An electric field of 4.80 105V/m is desired...Ch. 24 - (II) How strong is the electric field between the...Ch. 24 - (II) A large metal sheet of thickness is placed...Ch. 24 - (III) Small distances are commonly measured...Ch. 24 - (III) In an electrostatic air cleaner...Ch. 24 - (I) The capacitance of a portion of a circuit is...Ch. 24 - (I) (a) Six 3.8-F capacitors are connected in...Ch. 24 - (II) Given three capacitors, C1 = 2.0 F, C2 = 1.5...Ch. 24 - (II) Suppose three parallel-plate capacitors,...Ch. 24 - (II) An electric circuit was accidentally...Ch. 24 - (II) Three conducting plates, each of area A, are...Ch. 24 - (II) Consider three capacitors, of capacitance...Ch. 24 - (II) A 0.50-F and a 0.80-F capacitor are connected...Ch. 24 - (II) In Fig. 2423, suppose C1 = C2 = C3 = C4 = C....Ch. 24 - (II) Suppose in Fig. 2423 that C1 = C2 = C3 = 16.0...Ch. 24 - (II) The switch S in Mg. 2424 is connected...Ch. 24 - (II) (a) Determine the equivalent capacitance...Ch. 24 - FIGURE 2425 Problems 32 and 33. (II) Suppose in...Ch. 24 - (II) Two capacitors connected in parallel produce...Ch. 24 - (II) In the capacitance bridge shown m Fig. 2426,...Ch. 24 - (II) Two capacitors, C1 = 3200 pF and C2 = 1800...Ch. 24 - (II) (a) Determine the equivalent capacitance of...Ch. 24 - (II) In Fig. 2427, let C1 = 2.00 F, C2 = 3.00 F,...Ch. 24 - (III) Suppose one plate of a parallel-plate...Ch. 24 - (III) A voltage V is applied to the capacitor...Ch. 24 - (I) 2200 V is applied to a 2800-pF capacitor. How...Ch. 24 - (I) There is an electric field near the Earths...Ch. 24 - (I) How much energy is stored by the electric...Ch. 24 - (II) A parallel-plate capacitor has fixed charges...Ch. 24 - (II) In Fig. 2427, Let V = 10.0 V and C1 = C2 = C3...Ch. 24 - (II) How much energy must a 28-V battery expend to...Ch. 24 - (II) (a) Suppose the outer radius Ra of a...Ch. 24 - (II) A 2.2-F capacitor is charged by a 12.0-V...Ch. 24 - (II) How much work would be required to remove a...Ch. 24 - (II) (a) Show that each plate of a parallel-plate...Ch. 24 - (II) Show that the electrostatic energy stored in...Ch. 24 - (II) When two capacitors are connected in parallel...Ch. 24 - (II) For commonly used CMOS (complementary metal...Ch. 24 - (I) What is the capacitance of two square parallel...Ch. 24 - (II) Suppose the capacitor in Example 2411 remains...Ch. 24 - (II) How much energy would be stored in the...Ch. 24 - (II) In the DRAM computer chip of Problem 10, the...Ch. 24 - (II) A 3500-pF air-gap capacitor is connected to a...Ch. 24 - (II) Two different dielectrics each fill half the...Ch. 24 - (II) Two different dielectrics fill the space...Ch. 24 - (II) Repeat Problem 60 (Fig. 2431) but assume the...Ch. 24 - (II) Two identical capacitors are connected in...Ch. 24 - (III) A slab of width d and dielectric constant K...Ch. 24 - (III) The quantity of liquid (such as cryogenic...Ch. 24 - (II) Show that the capacitor in Example 2412 with...Ch. 24 - (II) Repeat Example 24-12 assuming the battery...Ch. 24 - (II) Using Example 2412 as a model, derive a...Ch. 24 - (II) In Example 2412 what percent of the stored...Ch. 24 - (III) The capacitor shown in Fig. 2434 is...Ch. 24 - (a) A general rule for estimating the capacitance...Ch. 24 - A cardiac defibrillator is used to shock a heart...Ch. 24 - A homemade capacitor is assembled by placing two...Ch. 24 - An uncharged capacitor is connected to a 34.0-V...Ch. 24 - It takes 18.5 J of energy to move a 13.0-mC charge...Ch. 24 - A huge 3.0-F capacitor has enough stored energy to...Ch. 24 - A coaxial cable, Fig. 2435, consists of an inner...Ch. 24 - The electric field between the plates of a...Ch. 24 - Capacitors can be used as electric charge...Ch. 24 - A parallel-plate capacitor is isolated with a...Ch. 24 - In lightning storms, the potential difference...Ch. 24 - A multilayer film capacitor has a maximum voltage...Ch. 24 - A 3.5 F capacitor is charged by a 12.4-V battery...Ch. 24 - The power supply for a pulsed nitrogen laser has a...Ch. 24 - A parallel-plate capacitor has square plates 12 cm...Ch. 24 - The variable capacitance of an old radio tuner...Ch. 24 - A high-voltage supply can be constructed from a...Ch. 24 - A 175-pF capacitor is connected in series with an...Ch. 24 - A parallel-plate capacitor with plate area 2.0 cm2...Ch. 24 - In the circuit shown in Fig. 2437. C1 = 1.0 F, C2...Ch. 24 - The long cylindrical capacitor shown in Fig. 2438...Ch. 24 - A parallel-plate capacitor has plate area A, plate...Ch. 24 - Consider the use of capacitors as memory cells. A...Ch. 24 - To get an idea how big a farad is, suppose you...Ch. 24 - A student wearing shoes with thin insulating soles...Ch. 24 - A parallel-plate capacitor with plate area A = 2.0...Ch. 24 - Let us try to estimate the maximum static...Ch. 24 - Paper has a dielectric constant K = 3.7 and a...Ch. 24 - (II) Six physics students were each given an air...
Additional Science Textbook Solutions
Find more solutions based on key concepts
If all of Earths nitrogen-fixing prokaryotes were to die suddenly, what would happen to the concentration of ni...
Biology: Life on Earth with Physiology (11th Edition)
Which culture uses NAD+? Use the following choices to answer questions. a. E. coli growing in glucose broth at ...
Microbiology: An Introduction
17. Anthropologists are interested in locating areas in Africa where fossils 4-8 million years old might be fou...
Campbell Biology: Concepts & Connections (9th Edition)
25. FIGURE EX4.25 shows the angular-velocity-versus-time graph for a particle moving in a circle, starting from...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
2. Define equilibrium population. Outline the conditions that must be met for a population to stay in genetic e...
Biology: Life on Earth (11th Edition)
Q1. Which set of wavelengths for light are arranged in order of increasing frequency?
a. 250 nm; 300 nm; 350 nm...
Introductory Chemistry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- No chatgpt plsarrow_forwardChildren playing in a playground on the flat roof of a city school lose their ball to the parking lot below. One of the teachers kicks the ball back up to the children as shown in the figure below. The playground is 6.10 m above the parking lot, and the school building's vertical wall is h = 7.40 m high, forming a 1.30 m high railing around the playground. The ball is launched at an angle of 8 = 53.0° above the horizontal at a point d = 24.0 m from the base of the building wall. The ball takes 2.20 s to reach a point vertically above the wall. (Due to the nature of this problem, do not use rounded intermediate values-including answers submitted in WebAssign-in your calculations.) (a) Find the speed (in m/s) at which the ball was launched. 18.1 m/s (b) Find the vertical distance (in m) by which the ball clears the wall. 0.73 ✓ m (c) Find the horizontal distance (in m) from the wall to the point on the roof where the ball lands. 2.68 m (d) What If? If the teacher always launches the ball…arrow_forwardIt is not possible to see very small objects, such as viruses, using an ordinary light microscope. An electron microscope can view such objects using an electron beam instead of a light beam. Electron microscopy has proved invaluable for investigations of viruses, cell membranes and subcellular structures, bacterial surfaces, visual receptors, chloroplasts, and the contractile properties of muscles. The "lenses" of an electron microscope consist of electric and magnetic fields that control the electron beam. As an example of the manipulation of an electron beam, consider an electron traveling away from the origin along the x axis in the xy plane with initial velocity ₁ = vi. As it passes through the region x = 0 to x=d, the electron experiences acceleration a = ai +a, where a and a, are constants. For the case v, = 1.67 x 107 m/s, ax = 8.51 x 1014 m/s², and a = 1.50 x 10¹5 m/s², determine the following at x = d = 0.0100 m. (a) the position of the electron y, = 2.60e1014 m (b) the…arrow_forward
- No chatgpt plsarrow_forwardneed help with the first partarrow_forwardA ball is thrown with an initial speed v, at an angle 6, with the horizontal. The horizontal range of the ball is R, and the ball reaches a maximum height R/4. In terms of R and g, find the following. (a) the time interval during which the ball is in motion 2R (b) the ball's speed at the peak of its path v= Rg 2 √ sin 26, V 3 (c) the initial vertical component of its velocity Rg sin ei sin 20 (d) its initial speed Rg √ sin 20 × (e) the angle 6, expressed in terms of arctan of a fraction. 1 (f) Suppose the ball is thrown at the same initial speed found in (d) but at the angle appropriate for reaching the greatest height that it can. Find this height. hmax R2 (g) Suppose the ball is thrown at the same initial speed but at the angle for greatest possible range. Find this maximum horizontal range. Xmax R√3 2arrow_forward
- An outfielder throws a baseball to his catcher in an attempt to throw out a runner at home plate. The ball bounces once before reaching the catcher. Assume the angle at which the bounced ball leaves the ground is the same as the angle at which the outfielder threw it as shown in the figure, but that the ball's speed after the bounce is one-half of what it was before the bounce. 8 (a) Assuming the ball is always thrown with the same initial speed, at what angle & should the fielder throw the ball to make it go the same distance D with one bounce (blue path) as a ball thrown upward at 35.0° with no bounce (green path)? 24 (b) Determine the ratio of the time interval for the one-bounce throw to the flight time for the no-bounce throw. Cone-bounce no-bounce 0.940arrow_forwardA rocket is launched at an angle of 60.0° above the horizontal with an initial speed of 97 m/s. The rocket moves for 3.00 s along its initial line of motion with an acceleration of 28.0 m/s². At this time, its engines fail and the rocket proceeds to move as a projectile. (a) Find the maximum altitude reached by the rocket. 1445.46 Your response differs from the correct answer by more than 10%. Double check your calculations. m (b) Find its total time of flight. 36.16 x Your response is within 10% of the correct value. This may be due to roundoff error, or you could have a mistake in your calculation. Carry out all intermediate results to at least four-digit accuracy to minimize roundoff error. s (c) Find its horizontal range. 1753.12 × Your response differs from the correct answer by more than 10%. Double check your calculations. marrow_forwardRace car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? Please answer parts a-B. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places. DONT FORGET TO DRAW VECTORS! ONLY USE BASIC FORMULAS TAUGHT IN PHYSICS. distance = speed * time.arrow_forward
- Race car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.…arrow_forwardHow is it that part a is connected to part b? I can't seem to solve either part and don't see the connection between the two.arrow_forwardHello, please help with inputing trial one into the equation, I just need a model for the first one so I can answer the rest. Also, does my data have the correct sigfig? Thanks!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305116399/9781305116399_smallCoverImage.gif)
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168161/9781938168161_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168000/9781938168000_smallCoverImage.gif)
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
How To Solve Any Circuit Problem With Capacitors In Series and Parallel Combinations - Physics; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=a-gPuw6JsxQ;License: Standard YouTube License, CC-BY