
a)
Interpretation:
The type of analyte that is used to respond to thermal conductivity gas chromatography detector has to be identified.
Concept Introduction:
Gas chromatography detector:
Flame ionization detector and thermal conductivity detector are most commonly used detector in gas chromatography. They both are sensitive to wide range of components and work over wide range of concentrations. Thermal conductivity detector is used to detect any component other than carrier gas whereas Flame ionization detector is sensitive to Hydrocarbons and is more sensitive than Thermal conductivity detector. Water cannot be detected by Flame ionization detector. Thermal conductivity detector is non-destructive and could be operated in series but Flame ionization detector is destructive one.
Some other detector includes catalytic combustion detector, discharge ionization detector, Electron capture detector, Flame photometric detector etc.
To identify the type of analyte that is used to respond to thermal conductivity of gas chromatography detector
a)

Explanation of Solution
All analytes responds to thermal conductivity gas chromatography detector.
b)
Interpretation:
The type of analyte that is used to respond to flame ionization gas chromatography detector has to be identified.
Concept Introduction:
Gas chromatography detector:
Flame ionization detector and thermal conductivity detector are most commonly used detector in gas chromatography. They both are sensitive to wide range of components and work over wide range of concentrations. Thermal conductivity detector is used to detect any component other than carrier gas whereas Flame ionization detector is sensitive to Hydrocarbons and is more sensitive than Thermal conductivity detector. Water cannot be detected by Flame ionization detector. Thermal conductivity detector is non-destructive and could be operated in series but Flame ionization detector is destructive one.
Some other detector includes catalytic combustion detector, discharge ionization detector, Electron capture detector, Flame photometric detector etc.
To identify the type of analyte that is used to respond to flame ionization gas chromatography detector
b)

Explanation of Solution
Carbon atoms containing Hydrogen atoms responds to flame ionization gas chromatography detector.
c)
Interpretation:
The type of analyte that is used to respond to electron capture gas chromatography detector has to be identified.
Concept Introduction:
Gas chromatography detector:
Flame ionization detector and thermal conductivity detector are most commonly used detector in gas chromatography. They both are sensitive to wide range of components and work over wide range of concentrations. Thermal conductivity detector is used to detect any component other than carrier gas whereas Flame ionization detector is sensitive to Hydrocarbons and is more sensitive than Thermal conductivity detector. Water cannot be detected by Flame ionization detector. Thermal conductivity detector is non-destructive and could be operated in series but Flame ionization detector is destructive one.
Some other detector includes catalytic combustion detector, discharge ionization detector, Electron capture detector, Flame photometric detector etc.
To identify the type of analyte that is used to respond to electron capture gas chromatography detector
c)

Explanation of Solution
Molecules containing Halogens,
d)
Interpretation:
The type of analyte that is used to respond to flame photometric gas chromatography detector has to be identified.
Concept Introduction:
Gas chromatography detector:
Flame ionization detector and thermal conductivity detector are most commonly used detector in gas chromatography. They both are sensitive to wide range of components and work over wide range of concentrations. Thermal conductivity detector is used to detect any component other than carrier gas whereas Flame ionization detector is sensitive to Hydrocarbons and is more sensitive than Thermal conductivity detector. Water cannot be detected by Flame ionization detector. Thermal conductivity detector is non-destructive and could be operated in series but Flame ionization detector is destructive one.
Some other detector includes catalytic combustion detector, discharge ionization detector, Electron capture detector, Flame photometric detector etc.
To identify the type of analyte that is used to respond to flame photometric of gas chromatography detector
d)

Explanation of Solution
Phosphorus, Sulphur and other elements selected by wavelength responds to flame photometric gas chromatography detector.
e)
Interpretation:
The type of analyte that is used to respond to Nitrogen-phosphorus gas chromatography detector has to be identified.
Concept Introduction:
Gas chromatography detector:
Flame ionization detector and thermal conductivity detector are most commonly used detector in gas chromatography. They both are sensitive to wide range of components and work over wide range of concentrations. Thermal conductivity detector is used to detect any component other than carrier gas whereas Flame ionization detector is sensitive to Hydrocarbons and is more sensitive than Thermal conductivity detector. Water cannot be detected by Flame ionization detector. Thermal conductivity detector is non-destructive and could be operated in series but Flame ionization detector is destructive one.
Some other detector includes catalytic combustion detector, discharge ionization detector, Electron capture detector, Flame photometric detector etc.
To identify the type of analyte that is used to respond to Nitrogen-phosphorus gas chromatography detector
e)

Explanation of Solution
Phosphorus, Nitrogen and some hydrocarbons responds to Nitrogen-phosphorus gas chromatography detector.
f)
Interpretation:
The type of analyte that is used to respond to Photoionization gas chromatography detector has to be identified.
Concept Introduction:
Gas chromatography detector:
Flame ionization detector and thermal conductivity detector are most commonly used detector in gas chromatography. They both are sensitive to wide range of components and work over wide range of concentrations. Thermal conductivity detector is used to detect any component other than carrier gas whereas Flame ionization detector is sensitive to Hydrocarbons and is more sensitive than Thermal conductivity detector. Water cannot be detected by Flame ionization detector. Thermal conductivity detector is non-destructive and could be operated in series but Flame ionization detector is destructive one.
Some other detector includes catalytic combustion detector, discharge ionization detector, Electron capture detector, Flame photometric detector etc.
To identify the type of analyte that is used to respond to Photoionization gas chromatography detector
f)

Explanation of Solution
g)
Interpretation:
The type of analyte that is used to respond to Sulphur chemiluminecence gas chromatography detector has to be identified.
Concept Introduction:
Gas chromatography detector:
Flame ionization detector and thermal conductivity detector are most commonly used detector in gas chromatography. They both are sensitive to wide range of components and work over wide range of concentrations. Thermal conductivity detector is used to detect any component other than carrier gas whereas Flame ionization detector is sensitive to Hydrocarbons and is more sensitive than Thermal conductivity detector. Water cannot be detected by Flame ionization detector. Thermal conductivity detector is non-destructive and could be operated in series but Flame ionization detector is destructive one.
Some other detector includes catalytic combustion detector, discharge ionization detector, Electron capture detector, Flame photometric detector etc.
To identify the type of analyte that is used to respond to Sulphur chemiluminecence gas chromatography detector
g)

Explanation of Solution
Compounds of Sulphurs responds to Sulphur chemiluminecence gas chromatography detector.
h)
Interpretation:
The type of analyte that is used to respond to atomic emission gas chromatography detector has to be identified.
Concept Introduction:
Gas chromatography detector:
Flame ionization detector and thermal conductivity detector are most commonly used detector in gas chromatography. They both are sensitive to wide range of components and work over wide range of concentrations. Thermal conductivity detector is used to detect any component other than carrier gas whereas Flame ionization detector is sensitive to Hydrocarbons and is more sensitive than Thermal conductivity detector. Water cannot be detected by Flame ionization detector. Thermal conductivity detector is non-destructive and could be operated in series but Flame ionization detector is destructive one.
Some other detector includes catalytic combustion detector, discharge ionization detector, Electron capture detector, Flame photometric detector etc.
To identify the type of analyte that is used to respond to atomic emission gas chromatography detector
h)

Explanation of Solution
Elements that are selected individually by wavelength responds to atomic emission gas chromatography detector.
i)
Interpretation:
The type of analyte that is used to respond to mass spectrometer gas chromatography detector has to be identified.
Concept Introduction:
Gas chromatography detector:
Flame ionization detector and thermal conductivity detector are most commonly used detector in gas chromatography. They both are sensitive to wide range of components and work over wide range of concentrations. Thermal conductivity detector is used to detect any component other than carrier gas whereas Flame ionization detector is sensitive to Hydrocarbons and is more sensitive than Thermal conductivity detector. Water cannot be detected by Flame ionization detector. Thermal conductivity detector is non-destructive and could be operated in series but Flame ionization detector is destructive one.
Some other detector includes catalytic combustion detector, discharge ionization detector, Electron capture detector, Flame photometric detector etc.
To identify the type of analyte that is used to respond to mass spectrometer gas chromatography detector
i)

Explanation of Solution
All analytes responds to mass spectrometer gas chromatography detector.
j)
Interpretation:
The type of analyte that is used to respond to vacuum ultraviolet absorbance gas chromatography detector has to be identified.
Concept Introduction:
Gas chromatography detector:
Flame ionization detector and thermal conductivity detector are most commonly used detector in gas chromatography. They both are sensitive to wide range of components and work over wide range of concentrations. Thermal conductivity detector is used to detect any component other than carrier gas whereas Flame ionization detector is sensitive to Hydrocarbons and is more sensitive than Thermal conductivity detector. Water cannot be detected by Flame ionization detector. Thermal conductivity detector is non-destructive and could be operated in series but Flame ionization detector is destructive one.
Some other detector includes catalytic combustion detector, discharge ionization detector, Electron capture detector, Flame photometric detector etc.
To identify the type of analyte that is used to respond to vacuum ultraviolet absorbance gas chromatography detector
j)

Explanation of Solution
Structural isomers, all those compounds that absorb Vacuum ultraviolet region except carrier gas (Helium, Nitrogen and Hydrogen) responds to vacuum ultraviolet absorbance gas chromatography detector.
Want to see more full solutions like this?
Chapter 24 Solutions
Quantitative Chemical Analysis
- Don't used hand raiting and don't used Ai solutionarrow_forward1. Base on this experimental results, how do you know that the product which you are turning in is methyl 3-nitrobenzoate(meta substituted product ) rather than either of the other two products? 2. What observation suggests that at least a small amount of one or both of the other two isomers are in the mother liquor?arrow_forwardExplain Huckel's rule.arrow_forward
- here is my question can u help me please!arrow_forwardSo I need help with understanding how to solve these types of problems. I'm very confused on how to do them and what it is exactly, bonds and so forth that I'm drawing. Can you please help me with this and thank you very much!arrow_forwardSo I need help with this problem, can you help me please and thank you!arrow_forward
- Provide steps and explanation please.arrow_forwardDraw a structural formula for the major product of the acid-base reaction shown. H 0 N + HCI (1 mole) CH3 N' (1 mole) CH3 You do not have to consider stereochemistry. ● • Do not include counter-ions, e.g., Na+, I, in your answer. . In those cases in which there are two reactants, draw only the product from 989 CH3 344 ? [Farrow_forwardQuestion 15 What is the major neutral organic product for the following sequence? 1. POCI₂ pyridine ? 2. OsO4 OH 3. NaHSO Major Organic Product ✓ OH OH 'OH OH 'OH 'CIarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





