Concept explainers
Electronic flash units for cameras contain a capacitor for storing the energy used to produce the flash. In one such unit, the flash lasts for
Learn your wayIncludes step-by-step video
Chapter 24 Solutions
University Physics with Modern Physics Plus Mastering Physics with eText -- Access Card Package (14th Edition)
Additional Science Textbook Solutions
Essential University Physics: Volume 1 (3rd Edition)
Conceptual Physical Science (6th Edition)
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
The Cosmic Perspective Fundamentals (2nd Edition)
Cosmic Perspective Fundamentals
University Physics (14th Edition)
- When a Leyden jar is charged by a hand generator (Fig. 27.1, page 828), the work done by the person turning the crank is stored as electric potential energy in the jar. When a capacitor is charged by a battery, where does the electric potential energy come from?arrow_forwardAn arrangement of capacitors is shown in Figure P27.23. a. If C = 9.70 105 F, what is the equivalent capacitance between points a and b? b. A battery with a potential difference of 12.00 V is connected to a capacitor with the equivalent capacitance. What is the energy stored by this capacitor? Figure P27.23 Problems 23 and 24.arrow_forwardAn electronics technician wishes to construct a parallel plate capacitor using rutile ( = 100) as the dielectric. The area of the plates is 1.00 cm2. What is the capacitance if the rutile thickness is 1.00 mm? (a) 88.5 pF (b) 177 pF (c) 8.85 F (d) 100 F (e) 35.4 Farrow_forward
- What If? The two capacitors of Problem 13 (C1 = 5.00 F and C2 = 12.0 F) are now connected in series and to a 9.00-Y battery. Find (a) the equivalent capacitance of the combination. (b) the potential difference across each capacitor, and (c) the charge on each capacitor.arrow_forwardA variable air capacitor used in a radio tuning circuit is made of N semicircular plates, each of radius R and positioned a distance d from its neighbors, to which it is electrically connected. As shown in Figure P20.38, a second identical set of plates is enmeshed with the first set. Each plate in the second set is halfway between two plates of the first set. The second set can rotate as a unit. Determine the capacitance as a function of the angle of rotation , where = 0 corresponds to the maximum capacitance. Figure P20.38arrow_forwardA parallel-plate capacitor has square plates of side s = 2.50 cm and plate separation d = 2.50 mm. The capacitor is charged by a battery to a charge Q = 4.00 C, after which the battery is disconnected. A porcelain dielectric ( = 6.5) is then inserted a distance y = 1.00 cm into the capacitor (Fig. P27.88). Hint: Consider the system as two capacitors connected in parallel. a. What is the effective capacitance of this capacitor? b. How much energy is stored in the capacitor? c. What are the magnitude and direction of the force exerted on the dielectric by the plates of the capacitor? Figure P27.88arrow_forward
- A parallel-plate capacitor has plates of area A = 7.00 102 m2 separated by distance d = 2.00 104 m. (a) Calculate the capacitance if the space between the plates is filled with air. What is the capacitance if the space is filled half with air and half with a dielectric of constant = 3.70 as in (b) Figure P16.56a, and (c) Figure P16.56b? (Hint: In (b) and (c), one of the capacitors is a parallel combination and the other is a series combination.) Figure P16.56arrow_forwardAn electric potential exists in a region of space such that V = 8x4 2y2 + 9z3 and V is in units of volts, when x, y, and z are in meters. a. Find an expression for the electric field as a function of position. b. What is the electric field at (2.0 m, 4.5 m, 2.0 m)?arrow_forwardFind the equivalent capacitance between points a and b in the combination of capacitors shown in Figure P20.51. Figure P20.51arrow_forward
- A parallel-plate capacitor has square plates that are 8.00 cm on each side and 3.80 mm apart. The space between the plates is completely filled with two square slabs of dielectric, each 8.00 cm on a side and 1.90 mm thick. One slab is Pyrex glass and the other slab is polystyrene. If the potential difference between the plates is 86.0 V, find how much electrical energy can be stored in this capacitor.arrow_forward(i) Rank the following five capacitors from greatest to smallest capacitance, noting any cases of equality, (a) a 20-F capacitor with a 4-V potential difference between its plates (b) a 30-F capacitor with charges of magnitude 90 C on each plate (c) a capacitor with charges of magnitude 80 C on its plates, differing by 2 V in potential. (d) a 10-F capacitor storing energy 125 J (e) a capacitor storing energy 250 J with a 10-V potential difference (ii) Rank the same capacitors in part (i) from largest to smallest according to the potential difference between the plates, (iii) Rank the capacitors in part (i) in the order of the magnitudes of the charges on their plates, (iv) Rank the capacitors in part (i) in the order of the energy they store.arrow_forwardA spherical capacitor consists of a spherical conducting shell of radius b and charge 2Q that is concentric with a smaller conducting sphere of radius a and charge +Q (Fig. P20.36). (a) Show that its capacitance is C=abke(ba) (b) Show that as b approaches infinity, the capacitance approaches the value a/ke = 40a. Figure P20.36arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning