Concept explainers
Calculate the minimum difference in standard electrode potentials needed to lower the concentration of the metal M1 to 2.00 × 10-4 M ¡n a solution that is 1.00 × 10-1 M in the less-reducible metal M2 where (a) M2 is univalent and M1 is divalent. (b) M2 and M1 are both divalent, (c) M2 is trivalent and M1 is univalent, (d) M2is divalent and M1 is univalent, (e) M2 is divalent and M1 ¡s trivalent.
(a)
Interpretation:
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Concept introduction:
The electrode potential of the cell is defined as the potential of cell consisting of two electrodes. Therefore at anode the oxidation occurs and at cathode reduction occurs. The Nernst equation is used to determine the electromotive force and the reduction potential of the half life cell.
Answer to Problem 24.2QAP
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Explanation of Solution
Given information:
The concentration of the metal
Write the expression for the Nernst at room temperature.
Here, the half-life potential is
Write the expression for the minimum difference in the standard electrode potential.
Substitute
Here, the initial energy is
Substitute
Here, the final energy is
Write the expression for the relation between the initial energy and final energy.
Substitute
Substitute
The minimum difference in the standard electrode potential needed to lower the concentration of metal
(b)
Interpretation:
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Concept introduction:
The electrode potential of the cell is defined as the potential of cell consisting of two electrodes. Therefore at anode the oxidation occurs and at cathode reduction occurs. The Nernst equation is used to determine the electromotive force and the reduction potential of the half life cell.
Answer to Problem 24.2QAP
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Explanation of Solution
The concentration of the metal
Substitute
Here, the initial energy is
Substitute
Here, the final energy is
Substitute
Substitute
The minimum difference in the standard electrode potential needed to lower the concentration of metal
(c)
Interpretation:
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Concept introduction:
The electrode potential of the cell is defined as the potential of cell consisting of two electrodes. Therefore at anode the oxidation occurs and at cathode reduction occurs. The Nernst equation is used to determine the electromotive force and the reduction potential of the half life cell.
Answer to Problem 24.2QAP
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Explanation of Solution
The concentration of the metal
Substitute
Here, the initial energy is
Substitute
Here, the final energy is
Substitute
Substitute
The minimum difference in the standard electrode potential needed to lower the concentration of metal
(d)
Interpretation:
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Concept introduction:
The electrode potential of the cell is defined as the potential of cell consisting of two electrodes. Therefore at anode the oxidation occurs and at cathode reduction occurs. The Nernst equation is used to determine the electromotive force and the reduction potential of the half life cell.
Answer to Problem 24.2QAP
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Explanation of Solution
The concentration of the metal
Substitute
Here, the initial energy is
Substitute
Here, the final energy is
Substitute
Substitute
The minimum difference in the standard electrode potential needed to lower the concentration of metal
(e)
Interpretation:
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Concept introduction:
The electrode potential of the cell is defined as the potential of cell consisting of two electrodes. Therefore at anode the oxidation occurs and at cathode reduction occurs. The Nernst equation is used to determine the electromotive force and the reduction potential of the half life cell.
Answer to Problem 24.2QAP
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Explanation of Solution
The concentration of the metal
Substitute
Here, the initial energy is
Substitute
Here, the final energy is
Substitute
Substitute
The minimum difference in the standard electrode potential needed to lower the concentration of metal
Want to see more full solutions like this?
Chapter 24 Solutions
PRINCIPLES OF INSTRUMENTAL ANALYSIS
- Answer the following questions by referring to standard electrode potentials at 25C. a Will oxygen, O2, oxidize iron(II) ion in solution under standard conditions? b Will copper metal reduce 1.0 M Ni2(aq) to metallic nickel?arrow_forwardWhat is the standard cell potential you would obtain from a cell at 25C using an electrode in which I(aq) is in contact with I2(s) and an electrode in which a chromium strip dips into a solution of Cr3(aq)?arrow_forwardWhat is the cell potential of the following cell at 25C? Ni(s)Ni2+(1.0M)Sn2(1.5104M)Sn(s)arrow_forward
- Sodium hypochlorite is produced by the electrolysis of cold sodium chloride solution. How long must a cell operate to produce 1.500103 L of 5.00% NaClO by mass if the cell current is 2.00103 A? Assume that the density of the solution is 1.00 g/cm3.arrow_forwardElectrolysis of a solution of CuSO4(aq) to give copper metal is carried out using a current of 0.66 A. How long should electrolysis continue to produce 0.50 g of copper?arrow_forwardAt what pH does Ecell = 0.00 V for the reduction of dichromate by iodide ion in acid solution, assuming standard-state concentrations of all species except H+ ion?arrow_forward
- Calculate the cell potential of a cell operating with the following reaction at 25C, in which [Cr2O32] = 0.020 M, [I] = 0.015 M, [Cr3+] = 0.40 M, and [H+] = 0.60 M. Cr2O72(aq)+6I(aq)+14H+(aq)2Cr3+(aq)+3I2(s)+7H2O(l)arrow_forwardA constant current of 1.25 amp is passed through an electrolytic cell containing a 0.050 M solution of CuSO4 and a copper anode and a platinum cathode until 3.00 g of copper is deposited. a How long does the current flow to obtain this deposit? b What mass of silver would be deposited in a similar cell containing 0.15 M Ag+ if the same amount of current were used?arrow_forwardFor the following half-reaction, = 2.07 V: A1F63(aq)+3eAl(s)+6F(aq) Using data from Table 17-1, calculate the equilibrium constant at 25C for the reaction A13+(aq)+6F(aq)A1F63(aq)K=?arrow_forward
- The following cell was found to have a potential of —0.492 V: Ag|AgCl(sat’d)||HA(0.200 M),NaA(0.300 M)|H2(1.00 atm),Pt Calculate the dissociation constant of HA, neglecting the junction potential.arrow_forwardThe cell potential of the following cell at 25C is 0.480 V. ZnZn2+(1M)H+(testsolution)H2(1atm)Pt What is the pH of the test solution?arrow_forwardA galvanic cell is based on the following half-reactions: In this cell, the copper compartment contains a copper electrode and [Cu2+] = 1.00 M, and the vanadium compartment contains a vanadium electrode and V2+ at an unknown concentration. The compartment containing the vanadium (1.00 L of solution) was titrated with 0.0800 M H2EDTA2, resulting in the reaction H2EDTA2(aq)+V2+(aq)VEDTA2(aq)+2H+(aq)K=? The potential of the cell was monitored to determine the stoichiometric point for the process, which occurred at a volume of 500.0 mL H2EDTA2 solution added. At the stoichiometric point, was observed to be 1 .98 V. The solution was buffered at a pH of 10.00. a. Calculate before the titration was carried out. b. Calculate the value of the equilibrium constant, K, for the titration reaction. c. Calculate at the halfway point in the titration.arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning