EBK PHYSICS FOR SCIENTISTS AND ENGINEER
9th Edition
ISBN: 8220100581557
Author: Jewett
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 24, Problem 24.17P
An infinitely long line charge having a uniform charge per unit length λ lies a distance d from point O as shown in Figure P24.17. Determine the total electric flux through the surface of a sphere of radius R centered
at O resulting from this line charge. Consider both cases, where (a) R< d and (b) R > d.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A non-uniformly charged semicircle of radius R=31.4 cm lies in the xy plane, centered at the origin, as shown. The charge density varies as the angle θ (in radians) according to λ=4.15θ, where λ has units of μC.
a) What is the total charge on the semicircle?
b) What is the y component of the electric field at the origin?
A spherically symmetric charge distribution produces the electric field E- (3x10 ) N/C along the radial directrion, where r is in
m. How much charge (in nC) is inside a 0.2 m radius spherical sphere?
A charge Q = -10 nC sits at the center of a thick uncharged conducting spherical shell with inner radius R1 = 3.0 m and outer radius R2 = 4.0 m. Find the
magnitude and direction of the electric field at a distance of (a) 2.0 m, (b) 3.5 m, and (c) 4.5 m away from the charge.
R.
R,
1.
Chapter 24 Solutions
EBK PHYSICS FOR SCIENTISTS AND ENGINEER
Ch. 24 - Suppose a point charge is located at the center of...Ch. 24 - If the net flux through a gaussian surface is...Ch. 24 - A cubical gaussian surface surrounds a long,...Ch. 24 - A coaxial cable consists of a long, straight...Ch. 24 - In which of the following contexts ran Gausss law...Ch. 24 - A particle with charge q is located inside a...Ch. 24 - Charges of 3.00 nC, -2.00 nC, -7.00 nC, and 1.00...Ch. 24 - A large, metallic, spherical shell has no net...Ch. 24 - Two solid spheres, both of radius 5 cm. carry...Ch. 24 - A uniform electric field of 1.00 N/C is set up by...
Ch. 24 - A solid insulating sphere of radius 5 cm carries...Ch. 24 - A cubical gaussian surface is bisected by a large...Ch. 24 - Rank the electric fluxes through each gaussian...Ch. 24 - Consider an electric field that is uniform in...Ch. 24 - A cubical surface surrounds a point charge q...Ch. 24 - A uniform electric field exists in a region of...Ch. 24 - If the total charge inside a closed surface is...Ch. 24 - Explain why the electric flux through a closed...Ch. 24 - If more electric field lines leave a gaussian...Ch. 24 - A person is placed in a large, hollow, metallic...Ch. 24 - Consider two identical conducting spheres whose...Ch. 24 - A common demonstration involves charging a rubber...Ch. 24 - On the basis of the repulsive nature of the force...Ch. 24 - The Sun is lower in the sky during the winter than...Ch. 24 - A flat surface of area 3.20 m2 is rotated in a...Ch. 24 - A vertical electric field of magnitude 2.00 104...Ch. 24 - A 40.0-cm-diameter circular loop is rotated in a...Ch. 24 - Consider a closed triangular box resting within a...Ch. 24 - An electric field of magnitude 3.50 kN/C is...Ch. 24 - A nonuniform electric field is given by the...Ch. 24 - An uncharged, nonconducting, hollow sphere of...Ch. 24 - Find the net electric flux through the spherical...Ch. 24 - The following charges are located inside a...Ch. 24 - The electric field everywhere on the surface of a...Ch. 24 - Four closed surfaces, S1 through S4 together with...Ch. 24 - A charge of 170 C is at the center of a cube of...Ch. 24 - In the air over a particular region at an altitude...Ch. 24 - A particle with charge of 12.0 C is placed at the...Ch. 24 - (a) Find the net electric flux through the cube...Ch. 24 - (a) A panicle with charge q is located a distance...Ch. 24 - An infinitely long line charge having a uniform...Ch. 24 - Find the net electric flux through (a) the closed...Ch. 24 - A particle with charge Q = 5.00 C is located at...Ch. 24 - A particle with charge Q is located at the center...Ch. 24 - A particle with charge Q is located a small...Ch. 24 - Figure P23.23 represents the top view of a cubic...Ch. 24 - In nuclear fission, a nucleus of uranium-238,...Ch. 24 - The charge per unit length on a long, straight...Ch. 24 - A 10.0-g piece of Styrofoam carries a net charge...Ch. 24 - Determine the magnitude of the electric field at...Ch. 24 - A large, flat, horizontal sheet of charge has a...Ch. 24 - Suppose you fill two rubber balloons with air,...Ch. 24 - Consider a thin, spherical shell of radius 14.0 cm...Ch. 24 - A nonconducting wall carries charge with a uniform...Ch. 24 - A uniformly charged, straight filament 7.00 m in...Ch. 24 - Assume the magnitude of the electric field on each...Ch. 24 - Consider a long, cylindrical charge distribution...Ch. 24 - A cylindrical shell of radius 7.00 cm and length...Ch. 24 - A solid sphere of radius 40.0 cm has a total...Ch. 24 - Review. A particle with a charge of 60.0 nC is...Ch. 24 - A long, straight metal rod has a radius of 5.00 cm...Ch. 24 - Why is the following situation impossible? A solid...Ch. 24 - A solid metallic sphere of radius a carries total...Ch. 24 - A positively charged panicle is at a distance R/2...Ch. 24 - A very large, thin, flat plate of aluminum of area...Ch. 24 - In a certain region of space, the electric field...Ch. 24 - Two identical conducting spheres each having a...Ch. 24 - A square plate of copper with 50.0-cm sides has no...Ch. 24 - A long, straight wire is surrounded by a hollow...Ch. 24 - A thin, square, conducting plate 50.0 cm on a side...Ch. 24 - A solid conducting sphere of radius 2.00 cm has a...Ch. 24 - Consider a plane surface in a uniform electric...Ch. 24 - Find the electric flux through the plane surface...Ch. 24 - A hollow, metallic, spherical shell has exterior...Ch. 24 - A sphere of radius R = 1.00 m surrounds a particle...Ch. 24 - A sphere of radius R surrounds a particle with...Ch. 24 - A very large conducting plate lying in the xy...Ch. 24 - A solid, insulating sphere of radius a has a...Ch. 24 - A solid insulating sphere of radius a = 5.00 cm...Ch. 24 - Two infinite, nonconducting sheets of charge are...Ch. 24 - For the configuration shown in Figure P24.45,...Ch. 24 - An insulating solid sphere of radius a has a...Ch. 24 - A uniformly charged spherical shell with positive...Ch. 24 - An insulating solid sphere of radius a has a...Ch. 24 - A slab of insulating material has a nonuniform...Ch. 24 - Prob. 24.62CPCh. 24 - A dosed surface with dimensions a = b= 0.400 111...Ch. 24 - A sphere of radius 2a is made of a nonconducting...Ch. 24 - A spherically symmetric charge distribution has a...Ch. 24 - A solid insulating sphere of radius R has a...Ch. 24 - An infinitely long insulating cylinder of radius R...Ch. 24 - A particle with charge Q is located on the axis of...Ch. 24 - Review. A slab of insulating material (infinite in...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A total charge Q is distributed uniformly on a metal ring of radius R. a. What is the magnitude of the electric field in the center of the ring at point O (Fig. P24.61)? b. What is the magnitude of the electric field at the point A lying on the axis of the ring a distance R from the center O (same length as the radius of the ring)? FIGURE P24.61arrow_forwardTwo infinite, nonconducting sheets of charge are parallel to each other as shown in Figure P19.73. The sheet on the left has a uniform surface charge density , and the one on the right hits a uniform charge density . Calculate the electric field at points (a) to the left of, (b) in between, and (c) to the right of the two sheets. (d) What If? Find the electric fields in all three regions if both sheets have positive uniform surface charge densities of value .arrow_forwardThe electric field everywhere on the surface of a thin, spherical shell of radius 0.800 m is of magnitude 892 N/C and points radially toward the center of the sphere. (a) What is the net charge within the sphere's surface? nC (b) What is the distribution of the charge inside the spherical shell? O The negative charge has a spherically symmetric charge distribution. O The positive charge has an asymmetric charge distribution. O The positive charge has a spherically symmetric charge distribution. O The negative charge has an asymmetric charge distribution.arrow_forward
- Chapter 22, Problem 030 SN X Incorrect. The figure shows two concentric rings, of radii Rs and R, that lie on the same plane. Point P lies on the central z axis, at distance D from the center of the rings. The smaller ring has uniformly distributed charge Qs. What is the uniformly distributed charge on the larger ring if the net electric field at P is zero? State your answer in terms of the given variables. QL = R L+D (R): 21 5+Darrow_forwardThe electric field everywhere on the surface of a thin, spherical shell of radius 0.730 m is of magnitude 916 N/C and points radially toward the center of the sphere. (a) What is the net charge within the sphere's surface? nC (b) What is the distribution of the charge inside the spherical shell? O The positive charge has a spherically symmetric charge distribution. O The negative charge has an asymmetric charge distribution. O The positive charge has an asymmetric charge distribution. The negative charge has a spherically symmetric charge distribution.arrow_forwardA thin plastic rod is bent into a semicircle of radius R centered at the origin. A charge - Qis uniformly distributed along the right half of the semicircle, while a charge of +Q is uniformly distributed along the left half of the semicircle, as shown in the figure. ^Y +Q R -Q X Determine the net electric field at the origin due to the entire semicircle. Your answer must be a vector.arrow_forward
- In Figure (a) below, a particle of charge +Q produces an electric field of magnitude Epart at point P, at distance R from the particle. In Figure (b), that same amount of charge is spread uniformly along a circular arc that has radius R and subtends an angle 8. The charge on the arc produces an electric field of magnitude Earc at its center of curvature P. For what value of 0 (inº) does Earc = 0.75Epart? (Hint: You will probably resort to a graphical solution.) +Q ||▬▬R—-| Number i P (a) ! +Q{{0/2 VR 8/24 (b) Units O (degreearrow_forwardIn the figure a sphere, of radius a = 14.2 cm and charge q = 1.00×10-5 C uniformly distributed throughout its volume, is concentric with a spherical conducting shell of inner radius b = 48.3 cm and outer radius c = 50.3 cm . This shell has a net charge of -q. a) Find expressions for the electric field, as a function of the radius r, within the sphere and the shell (r < a). Evaluate for r = 7.1 cm. b) Find expressions for the electric field, as a function of the radius r, between the sphere and the shell (a < r < b). Evaluate for r=31.2 cm. c) Find expressions for the electric field, as a function of the radius r, inside the shell (b < r < c). Evaluate for r = 49.3 cm. d) Find expressions for the electric field, as a function of the radius r, outside the shell (r > c). Evaluate for r = 51.3 cm. e) What is the charge on the outer surface of the shell?arrow_forwardA non-uniform electric field directed along the x-axis penetrates a cubical surface oriented as shown in the figure. The cube has an edge length of L=0.53 m and the field varies from E1=2000 N/C at x=0 to E2=5000 N/C at x=L. Find the total charge (in nC) enclosed by the cube. E, E2arrow_forward
- A semicircular wire of radius R is uniformly charged with Q₁ = 4.4Q and located in a two dimensional coordinate system as shown in the figure. A point charge Q₂ = 0.4Q is placed at 0.7R on the y-axis. Determine the electric field at point o in terms of kQ/R² where is the unit vector. Take rt-3.14 and provide your answer with two decimal places. Answer: Q₁ Q₂❤ 0 R Xxarrow_forwardGggarrow_forwardThe electric field on the axis of a uniformly charged ring has magnitude 400 kN/C at a point 6 cm from the ring center. The magnitude 15 cm from the center is 125 kN/C; in both cases the field points away from the ring. a. Find the rings radius b. find the rings chargearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY