University Physics with Modern Physics (14th Edition)
14th Edition
ISBN: 9780321973610
Author: Hugh D. Young, Roger A. Freedman
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 24, Problem 24.17DQ
In terms of the dielectric constant K, what happens to the electric flux through the Gaussian surface shown in Fig. 24.22 when the dielectric is inserted into the previously empty space between the plates? Explain.
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule03:26
Students have asked these similar questions
NEW
General
HI Q Q ↓
Close
5. The figure shows a charged dielectric sphere centered at the origin and touches an infinite line of
charges at x=4 m. The charged line extends along the z-axes as shown. Find the magnitude of the
electric field (in N/C) at x=3 m.
z (m)
y (m)
Q= 10 nC
X=4 m
X (m).
Infinite line charge with A= 4 nC/m
A) 3.22
B) 50.1
C) 72
D) 67.8
E) 4.2
Image
11:36 AM
6185 Sunny
4× DEU
13
Please asap
As seen in the figure below, conducting spheres with a = 2 cm, b = 4 cm radius are placed concentrically. On the sphere of radius a, there is a total electrical charge of Q = 5C. The sphere of radius b is grounded. The area between the spheres is filled with material with a dielectric constant of 3ε0.
a) Find the surface charge density on the sphere of radius b.
b) Find the electric field in the region between the spheres.
c) Find the potential function in the region between the spheres.
Chapter 24 Solutions
University Physics with Modern Physics (14th Edition)
Ch. 24.1 - A capacitor has vacuum in the space between the...Ch. 24.2 - You want to connect a 4-F capacitor and an 8-F...Ch. 24.3 - You want to connect a 4-F capacitor and an 8-F...Ch. 24.4 - The space between the plates of an isolated...Ch. 24.5 - A parallel-plate capacitor has charges Q and Q on...Ch. 24.6 - A single point charge q is embedded in a very...Ch. 24 - Equation (24.2) shows that the capacitance of a...Ch. 24 - Suppose several different parallel-plate...Ch. 24 - Suppose the two plates of a capacitor have...Ch. 24 - To store the maximum amount of energy in a...
Ch. 24 - In the parallel-plate capacitor of Fig. 24.2,...Ch. 24 - A parallel-plate capacitor is charged by being...Ch. 24 - A parallel-plate capacitor is charged by being...Ch. 24 - Two parallel-plate capacitors, identical except...Ch. 24 - The charged plates of a capacitor attract each...Ch. 24 - You have two capacitors and want to connect them...Ch. 24 - As shown in Table 24.1, water has a very large...Ch. 24 - Is dielectric strength the same thing as...Ch. 24 - A capacitor made of aluminum foil strips separated...Ch. 24 - Suppose you bring a slab of dielectric close to...Ch. 24 - The freshness of fish can be measured by placing a...Ch. 24 - Electrolytic capacitors use as their dielectric an...Ch. 24 - In terms of the dielectric constant K, what...Ch. 24 - A parallel-plate capacitor is connected to a power...Ch. 24 - Liquid dielectrics that have polar molecules (such...Ch. 24 - A conductor is an extreme case of a dielectric,...Ch. 24 - The two plates of a capacitor are given charges Q....Ch. 24 - The plates of a parallel-plate capacitor are 2.50...Ch. 24 - The plates of a parallel-plate capacitor are 3.28...Ch. 24 - A parallel-plate air capacitor of capacitance 245...Ch. 24 - Cathode-ray-tube oscilloscopes have parallel metal...Ch. 24 - A 10.0-F parallel-plate capacitor with circular...Ch. 24 - A 5.00-F parallel-plate capacitor is connected to...Ch. 24 - A parallel-plate air capacitor is to store charge...Ch. 24 - A 5.00-pF, parallel-plate, air-filled capacitor...Ch. 24 - A capacitor is made from two hollow, coaxial, iron...Ch. 24 - A cylindrical capacitor consists of a solid inner...Ch. 24 - A spherical capacitor contains a charge of 3.30 nC...Ch. 24 - A cylindrical capacitor has an inner conductor of...Ch. 24 - A spherical capacitor is formed from two...Ch. 24 - Figure E24.14 shows a system of four capacitors,...Ch. 24 - BIO Electric Eels. Electric eels and electric fish...Ch. 24 - For the system of capacitors shown in Fig. E24.16,...Ch. 24 - In Fig. E24.17, each capacitor has C = 4.00 F and...Ch. 24 - In Fig. 24.8a, let C1 = 3.00 F, C2 = 5.00F, and...Ch. 24 - In Fig. 24.9a, let C1 = 3.00 F, C2 = 5.00 F, and...Ch. 24 - In Fig. E24.20, C1 = 6.00 F, C2 = 3 00 F, and C3 =...Ch. 24 - For the system of capacitors shown in Fig. E24.21,...Ch. 24 - Suppose the 3-F capacitor in Fig. 24.10a were...Ch. 24 - 5.80-F, parallel-plate, air capacitor has a plate...Ch. 24 - A parallel-plate air capacitor has a capacitance...Ch. 24 - An air capacitor is made from two flat parallel...Ch. 24 - A parallel-plate vacuum capacitor has 8.38 J of...Ch. 24 - You have two identical capacitors and an external...Ch. 24 - For the capacitor net-work shown in Fig. E24.28,...Ch. 24 - For the capacitor net-work shown in Fig. E24.29,...Ch. 24 - A 0.350-m-long cylindrical capacitor consists of a...Ch. 24 - A cylindrical air capacitor of length 15.0 m...Ch. 24 - A capacitor is formed from two concentric...Ch. 24 - A 12.5-F capacitor is connected to a power supply...Ch. 24 - A parallel-plate capacitor has capacitance C0 =...Ch. 24 - Two parallel plates have equal and opposite...Ch. 24 - A budding electronics hobbyist wants to make a...Ch. 24 - The dielectric to be used in a parallel-plate...Ch. 24 - BIO Potential in Human Cells. Some cell walls in...Ch. 24 - A constant potential difference of 12 v is...Ch. 24 - Polystyrene has dielectric constant 2.6 and...Ch. 24 - When a 360-nF air capacitor (1 nF = 109F) is...Ch. 24 - A parallel-plate capacitor has capacitance C =...Ch. 24 - A parallel-plate capacitor has the volume between...Ch. 24 - A parallel-plate capacitor has plates with area...Ch. 24 - Electronic flash units for cameras contain a...Ch. 24 - A parallel-plate air capacitor is made by using...Ch. 24 - In one type of computer keyboard, each key holds a...Ch. 24 - BIO Cell Membranes. Cell membranes (the walled...Ch. 24 - A 20.0-F capacitor is charged to a potential...Ch. 24 - In Fig. 24.9a, let C1 = 9.0 F, C2 = 4.0 F, and Vab...Ch. 24 - For the capacitor network shown in Fig. P24.51,...Ch. 24 - In Fig. E24.17, C1 = 6.00 F, C2 = 3.00 F, C3 =...Ch. 24 - In Fig. P24.53, C1 = C5 = 8.4 F and C2 = C3 = C4 =...Ch. 24 - Current materials-science technology allows...Ch. 24 - In Fig. E24.20, C1 = 3.00 F and Vab = 150 V. The...Ch. 24 - The capacitors in Fig. P24.56 are initially...Ch. 24 - Three capacitors having capacitances of 8.4, 8.4,...Ch. 24 - Capacitance of a Thundercloud. The charge center...Ch. 24 - In Fig. P24.59, each capacitance C1 is 6.9 F, and...Ch. 24 - Each combination of capacitors between points a...Ch. 24 - A parallel-plate capacitor with only air between...Ch. 24 - An air capacitor is made by using two flat plates,...Ch. 24 - A potential difference Vab = 48.0 V is applied...Ch. 24 - CALC The inner cylinder of a long, cylindrical...Ch. 24 - A parallel-plate capacitor has square plates that...Ch. 24 - A parallel-plate capacitor is made from two plates...Ch. 24 - Three square metal plates A, B, and C, each 12.0...Ch. 24 - A fuel gauge uses a capacitor to determine the...Ch. 24 - DATA Your electronics company has several...Ch. 24 - DATA You are designing capacitors for various...Ch. 24 - DATA You are conducting experiments with an...Ch. 24 - Two square conducting plates with sides of length...Ch. 24 - BIO THE ELECTRIC EGG. Upon fertilization, the eggs...Ch. 24 - Suppose that the egg has a diameter of 200 m. What...Ch. 24 - Suppose that the change in Vm was caused by the...Ch. 24 - What is the minimum amount of work that must be...
Additional Science Textbook Solutions
Find more solutions based on key concepts
68. The moving ions can be thought of as a current loop, and it will produce its own magnetic field. The direct...
College Physics: A Strategic Approach (4th Edition)
Figure 12.15 shows how a scale with a capacity of only 250 N can be used to weigh a heavier person. The 3.4-kg ...
Essential University Physics (3rd Edition)
(a) What is the resonant frequency of an RLC series circuit with R=20 , L=2.0mH , and C=4.0F (b) What is the im...
University Physics Volume 2
What is the length of a tube that has a fundamental frequency of 176 Hz and a first overtone of 352 Hz if the s...
University Physics Volume 1
42. A bicycle wheel is rotating at 50 rpm when the cyclist begins to
pedal harder, giving the wheel a constant...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A thin, square, conducting plate 50.0 cm on a side lies in the xy plane. A total charge of 4.00 108 C is placed on the plate. Find (a) the charge density on each face of the plate, (b) the electric field just above the plate, and (c) the electric field just below the plate. You may assume the charge density is uniform.arrow_forwardFrom Gauss's law, the electric field set up by a uniform line of charge is E=(20r)r where r is a unit vector pointing radially away from the line and is the linear charge density along the line. Derive an expression for the potential difference between r = r1, and r = r2.arrow_forwardFind an expression for the electric field between the two conducting disks in Figure P27.61. Make sure your expression is general enough to include the possibility of a dielectric between the disks. Check your answer using the information given in Section 27-8. Figure P27.61arrow_forward
- Give a plausible argument as to why the electric field outside an infinite charged sheet is constant.arrow_forwardConsider the electric dipole shown in Figure P19.20. Show that the electric field at a distant point on the + x axis is Ex 4 keqa/x3.arrow_forwardRank the electric fluxes through each gaussian surface shown in Figure OQ19.7 from largest to smallest. Display any cases of equality in your ranking. Figure OQ19.7arrow_forward
- Two solid spheres, both of radius 5 cm, carry identical total charges of 2 C. Sphere A is a good conductor. Sphere B is an insulator, and its charge is distributed uniformly throughout its volume. (i) How do the magnitudes of the electric fields they separately create at a radial distance of 6 cm compare? (a) EA EB = 0 (b) EA EB 0 (c) EA = EB 0 (d) 0 EA EB (e) 0 = EA EB (ii) How do the magnitudes of the electric fields they separately create at radius 4 cm compare? Choose from the same possibilities as in part (i).arrow_forwardAn electron and a proton, each starting from rest, are accelerated by the same uniform electric field of 200 N/C. Determine the distance and time for each particle to acquire a kinetic energy of 3.21016 J.arrow_forwardWhen a potential difference of 150. V is applied to the plates of an air-filled parallel-plate capacitor, the plates carry a surface charge density of 3.00 1010 C/cm2. What is the spacing between the plates?arrow_forward
- A point charge of q=50108 C is placed at the center of an uncharged spherical conducting shell of inner radius 6.0 cm and outer radius 9.0 cm. Find the electric potential at (a) r = 4,0cm, (b) r = 8.0 cm, (c) r — 12.0 cm.arrow_forwardA thin conducing plate 2.0 m on a side is given a total charge of 10.0C . (a) What is the electric field 1.0 cm above the plate? (b) What is the force on an electron at this point? (c) Repeat these calculations for a point 2.0 cm above the plate. (d) When the electron moves from 1.0 to 2.0 cm above the plate, how much work is done on it by the electric field?arrow_forwardProblems 72, 73, and 74 are grouped. 72. A Figure P26.72 shows a source consisting of two identical parallel disks of radius R. The x axis runs through the center of each disk. Each disk carries an excess charge uniformly distributed on its surface. The disk on the left has a total positive charge Q, and the disk on the right has a total negative charge Q. The distance between the disks is 3R, and point A is 2R from the positively charged disk. Find an expression for the electric potential at point A between the disks on the x axis. Approximate any square roots to three significant figures. FIGURE P26.72 Problems 72, 73, and 74.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY