(a)
Interpretation:
More stable nuclide has to be identified among the given pair.
Concept Introduction:
Nuclear stability means that the nucleus is stable meaning that it does not spontaneously emit any kind of radioactivity.
Nuclear stability can be explained based on neutron to proton ratio (N/Z) in the nucleus.
For a stable atoms having low
For a stable nucleus N/Z ratio is one and which lies in the belt of stability of graph of number of protons to number neutrons.
When an isotope is above the belt of stability, N/Z ratio is high and there exists a beta emission to decrease the stability.
General rules for predicting the nuclear stability is given below,
- If the nucleus contains 2, 8,20,50,82 or 126 protons or neutrons, then they are generally considered as stable than the nuclei that do not possess these numbers.
- If the nuclei has even number of both protons and neutrons, then they are considered as stable as those with odd number of these particles.
- All
isotopes of elements with atomic number higher than 83 are radioactive.
(b)
Interpretation:
More stable nuclide has to be identified among the given pair.
Concept Introduction:
Nuclear stability means that the nucleus is stable meaning that it does not spontaneously emit any kind of radioactivity.
Nuclear stability can be explained based on neutron to proton ratio (N/Z) in the nucleus.
For a stable atoms having low atomic number, n/p ratio is close to 1. When atomic number increases N/Z becomes greater than 1.
For a stable nucleus N/Z ratio is one and which lies in the belt of stability of graph of number of protons to number neutrons.
When an isotope is above the belt of stability, N/Z ratio is high and there exists a beta emission to decrease the stability.
General rules for predicting the nuclear stability is given below,
- If the nucleus contains 2, 8,20,50,82 or 126 protons or neutrons, then they are generally considered as stable than the nuclei that do not possess these numbers.
- If the nuclei has even number of both protons and neutrons, then they are considered as stable as those with odd number of these particles.
- All isotopes of elements with atomic number higher than 83 are radioactive.
(c)
Interpretation:
More stable nuclide has to be identified among the given pair.
Concept Introduction:
Nuclear stability means that the nucleus is stable meaning that it does not spontaneously emit any kind of radioactivity.
Nuclear stability can be explained based on neutron to proton ratio (N/Z) in the nucleus.
For a stable atoms having low atomic number, n/p ratio is close to 1. When atomic number increases N/Z becomes greater than 1.
For a stable nucleus N/Z ratio is one and which lies in the belt of stability of graph of number of protons to number neutrons.
When an isotope is above the belt of stability, N/Z ratio is high and there exists a beta emission to decrease the stability.
General rules for predicting the nuclear stability is given below,
- If the nucleus contains 2, 8,20,50,82 or 126 protons or neutrons, then they are generally considered as stable than the nuclei that do not possess these numbers.
- If the nuclei has even number of both protons and neutrons, then they are considered as stable as those with odd number of these particles.
- All isotopes of elements with atomic number higher than 83 are radioactive.
(d)
Interpretation:
More stable nuclide has to be identified among the given pair.
Concept Introduction:
Nuclear stability means that the nucleus is stable meaning that it does not spontaneously emit any kind of radioactivity.
Nuclear stability can be explained based on neutron to proton ratio (N/Z) in the nucleus.
For a stable atoms having low atomic number, n/p ratio is close to 1. When atomic number increases N/Z becomes greater than 1.
For a stable nucleus N/Z ratio is one and which lies in the belt of stability of graph of number of protons to number neutrons.
When an isotope is above the belt of stability, N/Z ratio is high and there exists a beta emission to decrease the stability.
General rules for predicting the nuclear stability is given below,
- If the nucleus contains 2, 8,20,50,82 or 126 protons or neutrons, then they are generally considered as stable than the nuclei that do not possess these numbers.
- If the nuclei has even number of both protons and neutrons, then they are considered as stable as those with odd number of these particles.
- All isotopes of elements with atomic number higher than 83 are radioactive.

Want to see the full answer?
Check out a sample textbook solution
Chapter 24 Solutions
CHEMISTRY:MOLECULAR...V.2 W/ACCESS
- 1. Arrange the following in order of increasing bond energy (lowest bond energy first, highest bond energy last). Provide your rationale. C=C, C-F, C=C, C-N, C-C List the bond order for each example.arrow_forwardWhat is the major enolate formed when treated with LDA? And why that one?arrow_forward4. Calculate the total number of sigma bonds and total number of pi bonds in each of the following compounds. a. HH :D: +1 I H-N-C-C-O-H I H b. HH H Н :N=C-C-C=C-CEC-H :0: total o H-C-H H-C = `C-H I H. 11 H-C = C= CH H total o total π total π 1 Harrow_forward
- In the following reaction, what quantity in moles of CH₃OH are required to give off 4111 kJ of heat? 2 CH₃OH (l) + 3 O₂ (g) → 2 CO₂ (g) + 4 H₂O(g) ∆H° = -1280. kJarrow_forwardIndicate the processes in the dismutation of Cu2O.arrow_forward1. Consider these three reactions as the elementary steps in the mechanism for a chemical reaction. 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 Potential Energy (kJ) 600 400 200 0 -200- -400 -600- -800 (i) Cl₂ (g) + Pt(s) → 2Cl (g) + Pt(s) (ii) Cl (g)+ CO (g) + Pt (s) → CICO (g) + Pt (s) Ea = 1550 kJ Ea = 2240 kJ (iii) Cl (g) + CICO (g) → Cl₂CO (g) Ea = 2350 kJ AH=-950 kJ ΔΗ = 575 ΚΙ AH=-825 kJ a. Draw the potential energy diagram for the reaction. Label the data points for clarity. The potential energy of the reactants is 600 kJ Reaction Progress b. What is the overall chemical equation? c. What is the overall change in enthalpy for the above chemical reaction? d. What is the overall amount of activation energy for the above chemical reaction? e. Which reaction intermediate would be considered a catalyst (if any) and why? f. If you were to add 2700kJ of energy to the reaction (e.g. 2700 kl of heat or electricity), would you be able to make the reaction reverse itself (i.e. have…arrow_forward
- draw the enolate anion and the carbonyl that would be needed to make this product through an aldol addition reaction.arrow_forwardDraw the Michael Adduct and the final product of the Robinson annulation reaction. Ignore inorganic byproducts.arrow_forwardDraw the Michael adduct and final product of the Robinson annulation reaction. Ignore inorganic byproductsarrow_forward
- Post Lab Questions. 1) Draw the mechanism of your Diels-Alder cycloaddition. 2) Only one isomer of product is formed in the Diels-Alder cycloaddition. Why? 3) Imagine that you used isoprene as diene - in that case you don't have to worry about assigning endo vs exo. Draw the "endo" and "exo" products of the Diels-Alder reaction between isoprene and maleic anhydride, and explain why the distinction is irrelevant here. 4) This does not hold for other dienes. Draw the exo and endo products of the reaction of cyclohexadiene with maleic anhydride. Make sure you label your answers properly as endo or exo. 100 °C Xylenes ??? 5) Calculate the process mass intensity for your specific reaction (make sure to use your actual amounts of reagent).arrow_forwardIndicate the product(s) A, B C and D that are formed in the reaction: H + NH-NH-CH [A+B] [C+D] hydrazonesarrow_forwardHow can you prepare a 6 mL solution of 6% H2O2, if we have a bottle of 30% H2O2?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





