a.
To calculate: The instantaneous velocity.
a.
Answer to Problem 21E
The instantaneous velocity is
Explanation of Solution
Given information:
The function is
Concept used:
The formula used is
Calculation:
The function is
Differentiate the function with respect to time
Conclusion: The instantaneous velocity of the particle is
b.
To calculate: The acceleration of the particle.
b.
Answer to Problem 21E
The acceleration of the particle is
Explanation of Solution
Given information:
The function is
Concept used:
The formula used is
Calculation:
The function is
Differentiate the function with respect to time
Differentiate the function again with respect to time
Conclusion: The acceleration of the particle is
c.
To calculate: The time at which the particle is at rest.
c.
Answer to Problem 21E
The times when particle is at rest are
Explanation of Solution
Given information:
The function is
Concept used:
The particle will be in rest when the velocity of the particle becomes zero.
Calculation:
The function is
Differentiate the function with respect to time
Equate the velocity to zero.
Solve further.
Conclusion: The particle will be in rest when
d.
To calculate: The time when particle changes its direction.
d.
Explanation of Solution
Given information:
The function is
Calculation:
The function is
The graph of the function is shown below.
The motion of the particle can be divided into four phases
(a) The particle starts when
(b) The particle stops at
(c) The particle changes direction and continues its motion until at
(d) Then it stops and continues its motion.
Chapter 2 Solutions
AP CALCULUS TEST PREP-WORKBOOK
- Consider the graphs of y = f(x) and y = g(x) in the given diagram y= f(x). y = g(x) Evaluate (f+g)(2) -5 Determine all for which g(x) < f(x) Determine all for which f(x) +3 = g(x)arrow_forwardI) For what value(s) of x does g(x) = -4? Separate multiple answers with commas as needed. J) Give the interval(s) of such that g(x) > 0. Use the union symbol between multiple intervals. K) Give the interval(s) of such that g(x) <0. Use the union symbol between multiple intervals.arrow_forwardneed help on Barrow_forward
- 4. Use the properties of limits to help decide whether each limit exists. If a limit exists, fi lim (2x²-4x+5) a) x-4 b) lim 2 x²-16 x-4x+2x-8arrow_forward7. The concentration of a drug in a patient's bloodstream h hours after it was injected is given by 0.17 h Ah= h²+2' Find and interpret lim A(h). Remember, the answers to word problems should always be given in a complete h→00 sentence, with proper units, in the context of the problem.arrow_forward#2arrow_forward
- 2. We want to find the inverse of f(x) = (x+3)² a. On the graph at right, sketch f(x). (Hint: use what you know about transformations!) (2 points) b. What domain should we choose to get only the part of f (x) that is one- to-one and non-decreasing? Give your answer in inequality notation. (2 points) - c. Now use algebra to find f¯¹ (x). (2 points) -4- 3- 2 1 -4 -3 -2 -1 0 1 -1- -2- --3- -4 -N- 2 3 4arrow_forward1. Suppose f(x) = 2 4 == x+3 and g(x) = ½-½. Find and fully simplify ƒ(g(x)). Be sure to show all x your work, write neatly so your work is easy to follow, and connect your expressions with equals signs. (4 points)arrow_forwardFind the ane sided limit lim 2 x+1-3x-3arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning