Concept explainers
Review Question 24.1 Explain why we observe multiple bright bands of light on a screen after light of a particular wavelength passes through two narrow, closely spaced slits.
The reason for the formation of multiple bright bands of light on a screen, when the light having a particular wavelength passes through two narrow closely spaced slits.
Answer to Problem 1RQ
Solution:
The phenomenon of interference of light is responsible for the formation of multiple bright bands.
Explanation of Solution
Introduction:
Every point on a light wave is the source of a circular shaped wavelet that moves in the forward direction with a speed same as that of the wave. A new wave front appears after superposition or interference of wavelets.
Explanation:
The interference pattern of light is observed when light passes through two narrow slits. Light consists of a wave with crests and troughs at equal spacings. When two light waves interact at a point such that two wave crests meet there, they produce constructive interference and a bright band of light appears on the screen. When two wave troughs meet at a point, they produce destructive interference and a dark patch is formed at that point on the screen.
The formation of bright and dark patterns of light gives an interference pattern of light on the screen, and thus, at all those places where light meets constructively, there are multiple bright bands of light on the screen.
Conclusion:
When a light of particular wavelength passes through two narrow closely-spaced slits, a pattern of multiple bright bands of light is formed on the screen because of constructive interference.
Want to see more full solutions like this?
Chapter 24 Solutions
Pearson eText for College Physics: Explore and Apply -- Instant Access (Pearson+)
Additional Science Textbook Solutions
Campbell Biology: Concepts & Connections (9th Edition)
Introductory Chemistry (6th Edition)
Cosmic Perspective Fundamentals
Microbiology: An Introduction
Organic Chemistry (8th Edition)
College Physics: A Strategic Approach (3rd Edition)
- 19:39 · C Chegg 1 69% ✓ The compound beam is fixed at Ę and supported by rollers at A and B. There are pins at C and D. Take F=1700 lb. (Figure 1) Figure 800 lb ||-5- F 600 lb بتا D E C BO 10 ft 5 ft 4 ft-—— 6 ft — 5 ft- Solved Part A The compound beam is fixed at E and... Hình ảnh có thể có bản quyền. Tìm hiểu thêm Problem A-12 % Chia sẻ kip 800 lb Truy cập ) D Lưu of C 600 lb |-sa+ 10ft 5ft 4ft6ft D E 5 ft- Trying Cheaa Những kết quả này có hữu ích không? There are pins at C and D To F-1200 Egue!) Chegg Solved The compound b... Có Không ☑ ||| Chegg 10 וחarrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardair is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward
- 13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forwardNo chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forward
- Calculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forwardNo chatgpt pls will upvotearrow_forwardCan you help me solve the questions pleasearrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College