Chemistry
4th Edition
ISBN: 9780078021527
Author: Julia Burdge
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 24, Problem 13QP
Interpretation Introduction
Interpretation:
The physical and chemical properties of hydrides are to be compared for the given elements.
Concept Introduction:
All those compounds that contain an element linked to hydrogen atom, in which hydrogen is considered a more electronegative species, are known as binary hydrides.
Hydrides could be ionic, covalent, or interstitial.
Ionic hydrides are the hydrides in which a hydrogen atom is linked directly with an alkali metal.
Covalent hydrides are the hydridesin which a hydrogen atom is bonded to the atom of another element covalently.
Interstitial hydrides are the hydridesin which a hydrogen atom and a metal are found in constant ratio that means hydrogen atom is combined to the metal.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The Properties, Reactions and Applications of Oxygen
Explain the classification of oxides as basic, acid, amphoteric and neutral. How can we predict whether an oxide will be acidic or basic based on its composition?
Give an example of an amphoteric oxide and give two typical reactions
A mixture of xenon and fluorine was heated. A sample of the white solid that formed reacted with hydrogen to yield 81 mL of xenon (at STP) and hydrogen fluoride, which was collected in water, giving a solution of hydrofluoric acid. The hydrofluoric acid solution was titrated, and 68.43 mL of 0.3172 M sodium hydroxide was required to reach the equivalence point. Determine the empirical formula for the white solid and write balanced chemical equations for the reactions involving xenon.
Main group elements react with oxygen to form acidic, amphoteric, and basic oxides in aqueous
solution. Give ONE example of acidic, amphoteric, and basic oxides, respectively. Explain why
the mentioned acidic and alkaline oxides exhibit these acidity and alkalinity properties in the
aqueous solution.
Group 17 elements exist as diatomic molecules and they are oxidising agents. Arrange the
strength of oxidising abilities of halogens in decreasing trend. Explain your answer.
Chapter 24 Solutions
Chemistry
Ch. 24 - Prob. 1QPCh. 24 - Prob. 2QPCh. 24 - Prob. 3QPCh. 24 - Prob. 4QPCh. 24 - Prob. 5QPCh. 24 - Describe two laboratory and two industrial...Ch. 24 - Prob. 7QPCh. 24 - Prob. 8QPCh. 24 - Prob. 9QPCh. 24 - Prob. 10QP
Ch. 24 - Elements number 17 and 20 form compounds with...Ch. 24 - Give an example of hydrogen as (a) an oxidizing...Ch. 24 - Prob. 13QPCh. 24 - Prob. 14QPCh. 24 - Prob. 15QPCh. 24 - Prob. 16QPCh. 24 - Prob. 17QPCh. 24 - Prob. 18QPCh. 24 - Prob. 19QPCh. 24 - Prob. 20QPCh. 24 - Briefly discuss the preparation and properties of...Ch. 24 - Prob. 22QPCh. 24 - Prob. 23QPCh. 24 - Prob. 24QPCh. 24 - Prob. 25QPCh. 24 - Prob. 26QPCh. 24 - Prob. 27QPCh. 24 - Prob. 28QPCh. 24 - Prob. 29QPCh. 24 - Prob. 30QPCh. 24 - 24.31 Sodium hydroxide is hygroscopic-that is. it...Ch. 24 - Prob. 32QPCh. 24 - Prob. 33QPCh. 24 - 24.34 Describe a laboratory and an industrial...Ch. 24 - Prob. 35QPCh. 24 - Prob. 36QPCh. 24 - Prob. 37QPCh. 24 - Prob. 38QPCh. 24 - Prob. 39QPCh. 24 - Prob. 40QPCh. 24 - Prob. 41QPCh. 24 - Prob. 42QPCh. 24 - Prob. 43QPCh. 24 - Prob. 44QPCh. 24 - Prob. 45QPCh. 24 - Prob. 46QPCh. 24 - Prob. 47QPCh. 24 - Prob. 48QPCh. 24 - Prob. 49QPCh. 24 - Prob. 50QPCh. 24 - Prob. 51QPCh. 24 - Prob. 52QPCh. 24 - Prob. 53QPCh. 24 - Prob. 54QPCh. 24 - Prob. 55QPCh. 24 - Prob. 56QPCh. 24 - Describe one industrial and one laboratory...Ch. 24 - Prob. 58QPCh. 24 - Prob. 59QPCh. 24 - Prob. 60QPCh. 24 - Prob. 61QPCh. 24 - Prob. 62QPCh. 24 - Prob. 63QPCh. 24 - Prob. 64QPCh. 24 - Prob. 65QPCh. 24 - Prob. 66QPCh. 24 - Prob. 67QPCh. 24 - Prob. 68QPCh. 24 - Prob. 69QPCh. 24 - Prob. 70QPCh. 24 - Prob. 71QPCh. 24 - Prob. 72QPCh. 24 - Prob. 73QPCh. 24 - Prob. 74QPCh. 24 - Prob. 75QPCh. 24 - 24.76 Describe two reactions in which sulfuric...Ch. 24 - Prob. 77QPCh. 24 - Prob. 78QPCh. 24 - Prob. 79QPCh. 24 - Prob. 80QPCh. 24 - Prob. 81QPCh. 24 - Prob. 82QPCh. 24 - Prob. 83QPCh. 24 - Prob. 84QPCh. 24 - Prob. 85QPCh. 24 - Prob. 86QPCh. 24 - Prob. 87QPCh. 24 - Prob. 88QPCh. 24 - Prob. 89APCh. 24 - Prob. 90APCh. 24 - Prob. 91APCh. 24 - Prob. 92APCh. 24 - Prob. 93APCh. 24 - Prob. 94APCh. 24 - Prob. 95APCh. 24 - 24.96 Consider the Frasch process, (a) How is it...Ch. 24 - Prob. 97APCh. 24 - Prob. 98APCh. 24 - Prob. 99APCh. 24 - Life evolves to adapt to its environment. In this...Ch. 24 - Prob. 101APCh. 24 - Prob. 102APCh. 24 - Prob. 103APCh. 24 - Prob. 104APCh. 24 - Prob. 1SEPPCh. 24 - Prob. 2SEPPCh. 24 - Prob. 3SEPPCh. 24 - Prob. 4SEPP
Knowledge Booster
Similar questions
- The reaction of calcium hydride, CaH2, with water can be characterized as a Lewis acid-base reaction: CaH2(s)+2H2O(l)Ca(OH)2(aq)+2H2(g) Identify the Lewis acid and the Lewis base among the reactants. The reaction is also an oxidation-reduction reaction. Identify the oxidizing agent, the reducing agent, and the changes in oxidation number that occur in the reaction.arrow_forwardXenon trioxide, XeO3, is reduced to xenon in acidic solution by iodide ion. Iodide ion is oxidized to iodine, I2. Write a balanced chemical equation for the reaction.arrow_forwardWhich is the stronger acid, H2SO4 or H2SeO4? Why? You may wish to review the Chapter on acid-base equilibria.arrow_forward
- How many grams of oxygen gas are necessary to react completely with 3.011021 atoms of magnesium to yield magnesium oxide?arrow_forwardThe amount of sodium hypochlorite in a bleach solution can be determined by using a given volume of bleach to oxidize excess iodide ion to iodine, because the reaction goes to completion. The amount of iodine produced is then determined by titration with sodium thiosulfate, Na2S2O3, which is oxidized to sodium tetrathionate, Na2S4O6. Potassium iodide was added in excess to 5.00 mL of bleach (density = 1.00 g/mL). This solution, containing the iodine released in the reaction, was titrated with 0.100 M Na2S2O3. If 34.6 mL of sodium thiosulfate was required to reach the endpoint (detected by disappearance of the blue color of the starch iodine complex), what was the mass percentage of NaClO in the bleach?arrow_forwardWrite the chemical formula for each of the following compounds, and indicate the oxidation state of the halogen or noble-gas atom in each:perchloric acidarrow_forward
- Suppose 10.00 g of an alkaline earth metal reacts with 10.0 L of water to produce 6.10 L of hydrogen gas at 1.00 atm and 25 degree celcius. Identify the metal and determine the pH of the solution.arrow_forwardDescribe the preparation of potassium permanganate. How does the acidified permanganate solution react with oxalic acid? Write the ionic equations for the reactions.arrow_forward(a) Which poisonous gas is evolved when white phosphorus is heated with Cone. NaOH solution? Write the chemical equation. (b) Write the formula of first noble gas compound prepared by N. Bartlett. What inspired N. Bartlett to prepare this compound? (c) Fluorine is a stronger oxidising agent than chlorine. Why? (d)Write one use of chlorine gas.arrow_forward
- Write balanced chemical equations for the following reactions. boron oxide → boron + oxygenarrow_forwardName the three possible oxides which form with alkali metals and alkaline earth metals. Name one example(including chemical formula) of each.arrow_forwardThe following substances are given: ammonia, oxygen, platinum and water. Write equations for the preparation of nitrous oxide from these substances.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning