Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 24, Problem 11Q
To determine
The explanation for the extraordinary luminosity of quasars from which even light cannot escape.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What is the Eddington luminosity of a quasar with a mass of 1 billion Msun ?
Suppose a quasar is shining with a luminosity L. What is the approximate minimal mass of the black hole? (If the black hole had a lower mass than this, the pressure in the material would overcome the gravity of the black hole and the material would be blown apart.) Give your answer in solar masses, in scientific notation to one significant figure (no decimal places).
Value:
L=1×10^12Lsun
Suppose the quasar in the previous problem is 10% efficient at turning rest mass into energetic photons, according to Einstein's equation E=mc2. What is the necessary rate of accretion of mass onto this black hole, to sustain its luminosity of 1* 1012 solar luminosities -- i.e. how much mass must be 'fed' to this black hole to keep the AGN shining so brightly?
Give your response in units of solar masses of material per year, with one decimal place.
3C 273 was the first quasar identified (1963). When we look at its chemical spectrum, we see that its hydrogen alpha emission line (Hα) has an observed wavelength of λobs = 759 nm.-(By comparing the observed wavelength of Hα with the rest-frame (source) wavelength, find 3C 273’s redshift, z.- How fast is 3C 273 moving away from us in km/s?-Assuming the value of Hubble constant listed in the table at the top of the page, how far away is 3C 273 in Mpc? This was, at the time, the most distant object in the known universe!answer to three significant figures
Chapter 24 Solutions
Universe: Stars And Galaxies
Ch. 24 - Prob. 1QCh. 24 - Prob. 2QCh. 24 - Prob. 3QCh. 24 - Prob. 4QCh. 24 - Prob. 5QCh. 24 - Prob. 6QCh. 24 - Prob. 7QCh. 24 - Prob. 8QCh. 24 - Prob. 9QCh. 24 - Prob. 10Q
Ch. 24 - Prob. 11QCh. 24 - Prob. 12QCh. 24 - Prob. 13QCh. 24 - Prob. 14QCh. 24 - Prob. 15QCh. 24 - Prob. 16QCh. 24 - Prob. 17QCh. 24 - Prob. 18QCh. 24 - Prob. 19QCh. 24 - Prob. 20QCh. 24 - Prob. 21QCh. 24 - Prob. 22QCh. 24 - Prob. 23QCh. 24 - Prob. 24QCh. 24 - Prob. 25QCh. 24 - Prob. 26QCh. 24 - Prob. 27QCh. 24 - Prob. 28QCh. 24 - Prob. 29QCh. 24 - Prob. 30QCh. 24 - Prob. 31QCh. 24 - Prob. 32Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Describe the arguments supporting the idea that quasars are at the distances indicated by their redshifts.arrow_forwardIn the chapter, we discussed that the largest redshifts found so far are greater than 6. Suppose we find a quasar with a redshift of 6.1. With what fraction of the speed of light is it moving away from us?arrow_forwardWhat evidence do we have that the luminous central region of a quasar is small and compact?arrow_forward
- Why are quasars generally so much more luminous (why do they put out so much more energy) than active galaxies?arrow_forwardIf a quasar has a redshift of 3.3, at what fraction of the speed of light is it moving away from us?arrow_forwardThe quasar that appears the brightest in our sky, 3C 273, is located at a distance of 2.4 billion lightyears. The Sun would have to be viewed from a distance of 1300 light-years to have the same apparent magnitude as 3C 273. Using the inverse square law for light, estimate the luminosity of 3C 273 in solar units.arrow_forward
- Describe the process by which the action of a black hole can explain the energy radiated by quasars.arrow_forwardWhen comparing two isolated spiral galaxies that have the same apparent brightness, but rotate at different rates, what can you say about their relative luminosity?arrow_forwardExplain in detailarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- Stars and GalaxiesPhysicsISBN:9781305120785Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning
Stars and Galaxies
Physics
ISBN:9781305120785
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning