(II) In a dynamic random access memory (DRAM) computer chip, each memory cell chiefly consists of a capacitor for charge storage. Each of these cells represents a single binary-bit value of 1 when its 35-fF capacitor (1 fF = 10 −15 F) is charged at 1.5 V, or 0 when uncharged at 0 V. ( a ) When it is fully charged, how many excess electrons are on a cell capacitor’s negative plate? ( b ) After charge has been placed on a cell capacitor’s plate, it slowly “leaks” off (through a variety of mechanisms) at a constant rate of 0.30 fC/s. How long does it take for the potential difference across this capacitor to decrease by 1.0% from its fully charged value? (Because of this leakage effect, the charge on a DRAM capacitor is “refreshed” many times per second.)
(II) In a dynamic random access memory (DRAM) computer chip, each memory cell chiefly consists of a capacitor for charge storage. Each of these cells represents a single binary-bit value of 1 when its 35-fF capacitor (1 fF = 10 −15 F) is charged at 1.5 V, or 0 when uncharged at 0 V. ( a ) When it is fully charged, how many excess electrons are on a cell capacitor’s negative plate? ( b ) After charge has been placed on a cell capacitor’s plate, it slowly “leaks” off (through a variety of mechanisms) at a constant rate of 0.30 fC/s. How long does it take for the potential difference across this capacitor to decrease by 1.0% from its fully charged value? (Because of this leakage effect, the charge on a DRAM capacitor is “refreshed” many times per second.)
(II) In a dynamic random access memory (DRAM) computer chip, each memory cell chiefly consists of a capacitor for charge storage. Each of these cells represents a single binary-bit value of 1 when its 35-fF capacitor (1 fF = 10−15 F) is charged at 1.5 V, or 0 when uncharged at 0 V. (a) When it is fully charged, how many excess electrons are on a cell capacitor’s negative plate? (b) After charge has been placed on a cell capacitor’s plate, it slowly “leaks” off (through a variety of mechanisms) at a constant rate of 0.30 fC/s. How long does it take for the potential difference across this capacitor to decrease by 1.0% from its fully charged value? (Because of this leakage effect, the charge on a DRAM capacitor is “refreshed” many times per second.)
Race car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.…
How is it that part a is connected to part b? I can't seem to solve either part and don't see the connection between the two.
Hello, please help with inputing trial one into the equation, I just need a model for the first one so I can answer the rest. Also, does my data have the correct sigfig?
Thanks!
Microbiology with Diseases by Body System (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.