Problems 87-94 require the following discussion of a secant line. The slope of the secant line containing the two points ( x , f ( x ) ) and ( x + h , f ( x + h ) ) on the graph of a function y = f ( x ) may be given as In calculus, this expression is called the difference quotient of f (a) Express the slope of the secant line of each function in terms of x and h. Be sure to simplify your answer. (b) Find m sec for h = 0.5 , 0.1, and 0.01 at x = 1 . What value does m sec approach as h approaches 0? (c) Find an equation for the secant line at x = 1 with h = 0 .01 . (d) Use a graphing utility to graph f and the secant line found in part (c) in the same viewing window. 94. f ( x ) = 1 x 2
Problems 87-94 require the following discussion of a secant line. The slope of the secant line containing the two points ( x , f ( x ) ) and ( x + h , f ( x + h ) ) on the graph of a function y = f ( x ) may be given as In calculus, this expression is called the difference quotient of f (a) Express the slope of the secant line of each function in terms of x and h. Be sure to simplify your answer. (b) Find m sec for h = 0.5 , 0.1, and 0.01 at x = 1 . What value does m sec approach as h approaches 0? (c) Find an equation for the secant line at x = 1 with h = 0 .01 . (d) Use a graphing utility to graph f and the secant line found in part (c) in the same viewing window. 94. f ( x ) = 1 x 2
Solution Summary: The author explains how the function f (x) = 1 x 2 requires the discussion of a secant line.
Problems 87-94 require the following discussion of a secant line. The slope of the secant line containing the two points
and
on the graph of a function
may be given as
In calculus, this expression is called thedifference quotient of f
(a) Express the slope of the secant line of each function in terms of x and h. Be sure to simplify your answer.
(b) Find msec for
, 0.1, and 0.01 at
. What value does msec approach as h approaches 0?
(c) Find an equation for the secant line at
with
.
(d) Use a graphing utility to graph f and the secant line found in part (c) in the same viewing window.
Explain the key points and reasons for 12.8.2 (1) and 12.8.2 (2)
Q1:
A slider in a machine moves along a fixed straight rod. Its
distance x cm along the rod is given below for various values of the time. Find the
velocity and acceleration of the slider when t = 0.3 seconds.
t(seconds)
x(cm)
0 0.1 0.2 0.3 0.4 0.5 0.6
30.13 31.62 32.87 33.64 33.95 33.81 33.24
Q2:
Using the Runge-Kutta method of fourth order, solve for y atr = 1.2,
From
dy_2xy +et
=
dx x²+xc*
Take h=0.2.
given x = 1, y = 0
Q3:Approximate the solution of the following equation
using finite difference method.
ly -(1-y=
y = x), y(1) = 2 and y(3) = −1
On the interval (1≤x≤3).(taking h=0.5).
Consider the function f(x) = x²-1.
(a) Find the instantaneous rate of change of f(x) at x=1 using the definition of the derivative.
Show all your steps clearly.
(b) Sketch the graph of f(x) around x = 1. Draw the secant line passing through the points on the
graph where x 1 and x->
1+h (for a small positive value of h, illustrate conceptually). Then,
draw the tangent line to the graph at x=1. Explain how the slope of the tangent line relates to the
value you found in part (a).
(c) In a few sentences, explain what the instantaneous rate of change of f(x) at x = 1 represents in
the context of the graph of f(x). How does the rate of change of this function vary at different
points?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.