When a shower is turned on in a dosed bathroom, the splashing of the water on the bare tub can fill the room’s air with negatively charged ions and produce an electric field in the air as great as 1000 N/C. Consider a bathroom with dimensions 2.5 m × 3.0 m × 2.0 m. Along the ceiling, floor, and four walls, approximate the electric field in the air as being directed perpendicular to the surface and as having a uniform magnitude of 600 N/C. Also, treat those surfaces as forming a closed Gaussian surface around the room’s air. What are (a) the volume charge density ρ and (b) the number of excess elementary charges e per cubic meter in the room’s air?
When a shower is turned on in a dosed bathroom, the splashing of the water on the bare tub can fill the room’s air with negatively charged ions and produce an electric field in the air as great as 1000 N/C. Consider a bathroom with dimensions 2.5 m × 3.0 m × 2.0 m. Along the ceiling, floor, and four walls, approximate the electric field in the air as being directed perpendicular to the surface and as having a uniform magnitude of 600 N/C. Also, treat those surfaces as forming a closed Gaussian surface around the room’s air. What are (a) the volume charge density ρ and (b) the number of excess elementary charges e per cubic meter in the room’s air?
When a shower is turned on in a dosed bathroom, the splashing of the water on the bare tub can fill the room’s air with negatively charged ions and produce an electric field in the air as great as 1000 N/C. Consider a bathroom with dimensions 2.5 m × 3.0 m × 2.0 m. Along the ceiling, floor, and four walls, approximate the electric field in the air as being directed perpendicular to the surface and as having a uniform magnitude of 600 N/C. Also, treat those surfaces as forming a closed Gaussian surface around the room’s air. What are (a) the volume charge density ρ and (b) the number of excess elementary charges e per cubic meter in the room’s air?
The figure (Figure 1) shows representations of six
thermodynamic states of the same ideal gas sample.
Figure
1 of 1
Part A
■Review | Constants
Rank the states on the basis of the pressure of the gas sample at each state.
Rank pressure from highest to lowest. To rank items as equivalent, overlap them.
▸ View Available Hint(s)
highest
0
☐ ☐ ☐ ☐ ☐ ☐
Reset
Help
B
F
A
D
E
The correct ranking cannot be determined.
Submit
Previous Answers
× Incorrect; Try Again; 4 attempts remaining
Provide Feedback
lowest
Next >
Part A
m
2πkT
) 3/2
Calculate the integral (v) = f vƒ (v)dv. The function f(v) describing the actual distribution of molecular speeds is called the Maxwell-Boltzmann distribution,
=
ƒ(v) = 4π (· v²e-mv²/2kT
. (Hint: Make the change of variable v² =x and use the tabulated integral foxne
integer and a is a positive constant.)
Express your answer in terms of the variables T, m, and appropriate constants.
-ax dx
n!
-
an+1
where n is a positive
(v)
=
ΕΠΙ ΑΣΦ
Submit Previous Answers Request Answer
?
× Incorrect; Try Again; 4 attempts remaining
Al Study Tools
Looking for some guidance? Let's work through a few related
practice questions before you go back to the real thing.
This won't impact your score, so stop at anytime and ask for
clarification whenever you need it.
Ready to give it a try?
Start
Microbiology with Diseases by Body System (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.