
Concept explainers
(a)
The electric potential of each of the three shells.
(a)

Answer to Problem 89P
The electric potential
Explanation of Solution
Given:
The inner shell is uncharged.
The middle shell has a positive charge
The outer shell has a negative charge
Formula used:
The expression for Gauss’s Law is given by,
The expression for potential is given by,
Calculation:
The required diagram is shown in Figure 1.
Figure 1
Applying Gauss’s law to a spherical Gaussian surface of radius
And
Applying Gauss’s law to a spherical Gaussian surface of radius
The potential between
And since
Therefore,
The inner shell too doesn’t carry charge, so the field between the points
Conclusion:
Therefore, The electric potential
(b)
The electric potential of each shell and the final charge on each shell.
(b)

Answer to Problem 89P
The electric potential of the shell
Explanation of Solution
Calculation:
Given:
The inner shell is uncharged.
The middle shell has a positive charge
The outer shell has a negative charge
Formula used:
The expression for Gauss’s Law is given by,
The expression for potential is given by,
Calculation:
When the inner and outer shells are connected their potentials become equal as a consequence of the distribution of charge.
The charges on the surface
The value of
The potential of shells a and c is given by,
The electric field between the points
The enclosed charge for
The potential difference between b and ciscalculated as,
Solve further,
Equate equation (2) and (3).
Substitute
The potential across
Conclusion:
Therefore, the electric potential of the shell
Want to see more full solutions like this?
Chapter 23 Solutions
Physics for Scientists and Engineers, Vol. 1
- star by spaceship Sixus is about 9.00 ly from Earth. To preach the star in 15.04 (ship time), how fast must you travel? C.arrow_forwardIf light-bulb A is unscrewed, how will the brightness of bulbs B and C change, if at all? How does the current drawn by from the battery change?arrow_forwardCan someone help mearrow_forward
- Can someone help me with this thank youarrow_forward(a) For a spherical capacitor with inner radius a and outer radius b, we have the following for the capacitance. ab C = k₂(b- a) 0.0695 m 0.145 m (8.99 × 10º N · m²/c²)( [0.145 m- 0.0695 m × 10-11 F = PF IIarrow_forwardA pendulum bob A (0.5 kg) is given an initialspeed of vA = 4 m/s when the chord ishorizontal. It then hits a stationary block B (1kg) which then slides to a maximum distanced before it stops. Determine the value of d.The coefficient of static friction between theblock and the plane is μk = 0.2. The coefficientof restitution between A and B is e = 0.8.Ans: d=1.0034 marrow_forward
- Figure 29-43 Problem 12. ••13 In Fig. 29-44, point P₁ is at distance R = 13.1 cm on the perpendicular bisector of a straight wire of length L = 18.0 cm carrying current i = 58.2 mA. (Note that the wire is not long.) What is the magnitude of the magnetic field at P₁ due to i? P2° R R Larrow_forwardCheckpoint 1 The figure shows the current i in a single-loop circuit with a battery B and a resistance R (and wires of neg- ligible resistance). (a) Should the emf arrow at B be drawn pointing leftward or rightward? At points a, B C R b, and c, rank (b) the magnitude of the current, (c) the electric potential, and (d) the electric potential energy of the charge carriers, greatest first.arrow_forwardPls help ASAParrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





