Concept explainers
(a)
The object distance.
(a)
Answer to Problem 79P
The object distance is
Explanation of Solution
Write the transverse magnification equation in terms of the object and image heights.
Here,
Write the transverse magnification equation in terms of the object and image distances.
Here,
Equate equations (I) and (II) and rewrite the equation for
Conclusion:
Given that the height of the object is
Substitute
Therefore, the object distance is
(b)
The type of the mirror used.
(b)
Answer to Problem 79P
The mirror is convex.
Explanation of Solution
The images formed by a plane mirror are upright and virtual and for point objects, the object and the image are equidistant from the mirror and lie on the same normal line. Depending on the location of the object, a concave mirror can form either real or virtual images and the images can be larger or smaller than the object. The images formed by a convex mirror are upright, virtual, smaller than the object and closer to the mirror than the object.
In part (a), it is found that the image is smaller in height than the object and it is given that the image is virtual. Also the image is upright and closer to the mirror than the object. This implies the used mirror is convex.
(c)
The focal length and the radius of curvature of the mirror.
(c)
Answer to Problem 79P
The focal length of the mirror is
Explanation of Solution
Write the mirror equation.
Here,
Rewrite the above equation for
Put equation (III) in the above equation.
Write the equation for the radius of curvature .
Here,
Conclusion:
Substitute
Substitute
Therefore, the focal length of the mirror is
Want to see more full solutions like this?
Chapter 23 Solutions
Physics
- No chatgpt pls will upvotearrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt pls will upvotearrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forward་ The position of a particle is described by r = (300e 0.5t) mm and 0 = (0.3t²) rad, where t is in seconds. Part A Determine the magnitude of the particle's velocity at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. v = Value Submit Request Answer Part B ? Units Determine the magnitude of the particle's acceleration at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. a = Value A ? Unitsarrow_forward
- Solve and answer the question correctly please. Thank you!!arrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forwardA spiral transition curve is used on railroads to connect a straight portion of the track with a curved portion. (Figure 1) Part A v = v₁ft/s 600 ft y = (106) x³ If the spiral is defined by the equation y = (106)³, where x and y are in feet, determine the magnitude of the acceleration of a train engine moving with a constant speed of v₁ = 30 ft/s when it is at point x = 600 ft. Express your answer to three significant figures and include the appropriate units. ? a = Value Unitsarrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON