Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 6FTD
A student argues that the total energy associated with the electric field of a charged sphere must be infinite because its field extends throughout an infinite volume. Critique this argument.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 23 Solutions
Essential University Physics (3rd Edition)
Ch. 23.1 - Three positive charges and one negative charge,...Ch. 23.2 - If I give you a 5-gallon bucket, you know how much...Ch. 23.3 - You need to replace a capacitor with one that can...Ch. 23.3 - You have two identical capacitors with capacitance...Ch. 23.4 - Youre at a point P a distance a from a point...Ch. 23 - Two positive point charges are infinitely far...Ch. 23 - How does the energy density at a certain distance...Ch. 23 - A dipole consists of two equal but opposite...Ch. 23 - Charge is spread over the surface of a balloon,...Ch. 23 - Does the superposition principle hold for...
Ch. 23 - A student argues that the total energy associated...Ch. 23 - A capacitor is said to carry a charge Q. Whats the...Ch. 23 - Does the capacitance describe the maximum amount...Ch. 23 - Is a force needed to hold the plates of a charged...Ch. 23 - A solid conducting slab is inserted between the...Ch. 23 - Two capacitors contain equal amounts of energy,...Ch. 23 - A parallel-plate capacitor is connected to a...Ch. 23 - Four 75-C charges, initially far apart, are...Ch. 23 - Three point charges +q and a fourth, 12q, are...Ch. 23 - Repeat Exercise 14 for the case when the fourth...Ch. 23 - If the three particles in Fig. 23.1 have identical...Ch. 23 - A crude model of the water molecule has a...Ch. 23 - A capacitor consists of square conducting plates...Ch. 23 - An uncharged capacitor has parallel plates 5.0 cm...Ch. 23 - (a) How much charge must be transferred between...Ch. 23 - A capacitors plates hold 1.3 C when charged to 60...Ch. 23 - Show that the units of 0 may be written as F/m.Ch. 23 - Find the capacitance of a parallel-plate capacitor...Ch. 23 - A parallel-plate capacitor with 1.1-mm plate...Ch. 23 - The power supply in a stereo receiver contains a...Ch. 23 - Find the capacitance of a capacitor that stores...Ch. 23 - You have a 1.0-F and a 2.0-F capacitor. What...Ch. 23 - Two capacitors are connected in series and the...Ch. 23 - (a) Find the equivalent capacitance of the...Ch. 23 - Youre given three capacitors: 1.0 F, 2.0 F, and...Ch. 23 - The energy density in a uniform electric field is...Ch. 23 - A car battery stores about 4 MJ of energy. If this...Ch. 23 - Air undergoes dielectric breakdown at a field...Ch. 23 - Consider a proton to be a uniformly charged sphere...Ch. 23 - A charge Q0 is at the origin. A second charge. Qx...Ch. 23 - A conducting sphere of radius a is surrounded by a...Ch. 23 - Two closely spaced square conducting plates...Ch. 23 - The potential difference across a cell membrane is...Ch. 23 - Which can store more energy: a 1.0-F capacitor...Ch. 23 - A 0.01-F, 300-V capacitor costs 25; a 0.1-F, 100-V...Ch. 23 - A medical defibrillator stores 950 J in a 100-F...Ch. 23 - A camera requires 5.0 J of energy for a flash...Ch. 23 - Engineers testing an ultracapacitor (see...Ch. 23 - Your companys purchasing department bought lots of...Ch. 23 - Whats the equivalent capacitance measured between...Ch. 23 - In Fig. 23.14, find the energy stored in the 1-F...Ch. 23 - Capacitors C1, and C2 are in series, with voltage...Ch. 23 - Youre evaluating a new hire in your companys...Ch. 23 - A parallel-plate capacitor has plates with area 50...Ch. 23 - A 470-pF capacitor consists of two 15-cm-radius...Ch. 23 - The first accurate estimate of cell membrane...Ch. 23 - Your company is still stuck with those 2-F...Ch. 23 - A cubical region 1.0 m on a side is located...Ch. 23 - A sphere of radius R contains charge Q spread...Ch. 23 - A sphere of radius R carries total charge Q...Ch. 23 - Prob. 56PCh. 23 - Two widely separated 4.0-mm-diameter water drops...Ch. 23 - A 2.1-mm-diameter wire carries a uniform line...Ch. 23 - A typical lightning flash transfers 30 C across a...Ch. 23 - A capacitor consists of two long concentric metal...Ch. 23 - A capacitor consists of a conducting sphere of...Ch. 23 - Show that the result of Problem 61 reduces to that...Ch. 23 - A solid sphere contains a uniform volume charge...Ch. 23 - An air-insulated parallel-plate capacitor of...Ch. 23 - Repeat parts (b) and (c) of Problem 64, now...Ch. 23 - A transmission line consists of two parallel...Ch. 23 - An infinitely long rod of radius R carries uniform...Ch. 23 - (a) Write the electrostatic potential energy of a...Ch. 23 - An unknown capacitor C is connected in series with...Ch. 23 - What total capacitance is required if the...Ch. 23 - If it were technically and economically feasible...Ch. 23 - While theyre firing, the average power delivered...Ch. 23 - Among the capacitors that store energy at NIF are...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Answer Problems 3 through 5 by choosing one of the eight labeled acceleration vectors or selecting option I: = ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
To what value must you adjust R3to balance a Wheatstone bridge, if the unknown resistance Rxis 100 , R1is 50.0...
College Physics
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
A stationary coil is in a magnetic field that is changing with time. Does the emf induced in the coil depend on...
University Physics Volume 2
The oxygen in Earth’s atmosphere was originally released by (a) outgassing from volcanoes; (b) plants; (c) cyan...
Life in the Universe (4th Edition)
Express the unit vectors in terms of (that is, derive Eq. 1.64). Check your answers several ways Also work o...
Introduction to Electrodynamics
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Problems 72, 73, and 74 are grouped. 72. A Figure P26.72 shows a source consisting of two identical parallel disks of radius R. The x axis runs through the center of each disk. Each disk carries an excess charge uniformly distributed on its surface. The disk on the left has a total positive charge Q, and the disk on the right has a total negative charge Q. The distance between the disks is 3R, and point A is 2R from the positively charged disk. Find an expression for the electric potential at point A between the disks on the x axis. Approximate any square roots to three significant figures. FIGURE P26.72 Problems 72, 73, and 74.arrow_forwardThree charged particles are arranged on corners of a square as shown in Figure OQ19.14, with charge Q on both the particle at the upper left corner and the particle at the lower right corner and with charge +2Q on the particle at the lower left corner. (i) What is the direction of the electric field at the upper right corner, which is a point in empty space? (a) It is upward and to the right. (b) It is straight to the right. (c) It is straight downward. (d) It is downward and to the left. (e) It is perpendicular to the plane of the picture and outward. (ii) Suppose the +2 Q charge at the lower left corner is removed. Then does the magnitude of the field at the upper right corner (a) become larger, (b) become smaller, (c) stay the same, or (d) change unpredictably? Figure OQ19.14arrow_forwardLightning can be studied with a Van de Graaff generator, which consists of a spherical dome on which charge is continuously deposited by a moving belt. Charge can be added until the electric field at the surface of the dome becomes equal to the dielectric strength of air. Any more charge leaks off in sparks as shown in Figure P20.67. Assume the dome has a diameter of 30.0 cm and is surrounded by dry air with a breakdown electric field of 3.00 106 V/m. (a) What is the maximum potential of the dome? (b) What is the maximum charge on the dome? Figure P20.67 David Evison/Shutterstock.comarrow_forward
- Four balls, each with mass m, are connected by four nonconducting strings to form a square with side a as shown in Figure P25.74. The assembly is placed on a nonconducting. frictionless. horizontal surface. Balls 1 and 2 each have charge q, and balls 3 and 4 are uncharged. After the string connecting halls 1 and 2 is cut, what is the maximum speed of balls 3 and 4?arrow_forwardThree charges are situated at corners of a rectangle as in Figure P16.13. How much work must an external agent do to move the 8.00-C charge to infinity? Figure P16.13 Problems 13 and 14.arrow_forwardA thin conducing plate 2.0 m on a side is given a total charge of 10.0C . (a) What is the electric field 1.0 cm above the plate? (b) What is the force on an electron at this point? (c) Repeat these calculations for a point 2.0 cm above the plate. (d) When the electron moves from 1.0 to 2.0 cm above the plate, how much work is done on it by the electric field?arrow_forward
- Lightning can be studied with a Van de Graaff generator, which consists of a spherical dome on which charge is continuously deposited by a moving belt. Charge can be added until the electric field at the surface of the dome becomes equal to the dielectric strength of air. Any more charge leaks off in sparks as shown in Figure P25.52. Assume the dome has a diameter of 30.0 cm and is surrounded by dry air with a "breakdown" electric field of 3.00 106 V/m. (a) What is the maximum potential of the dome? (b) What is the maximum charge on the dome?arrow_forwardIn Figure P19.17, determine the point (other than infinity) at which the electric field is zero.arrow_forwardThe electric field at a point on the perpendicular bisector of a charged rod was calculated as the first example of a continuous charge distribution, resulting in Equation 24.15:E=kQy12+y2j a. Find an expression for the electric field when the rod is infinitely long. b. An infinitely long rod with uniform linear charge density also contains an infinite amount of charge. Explain why this still produces an electric field near the rod that is finite.arrow_forward
- A proton is released from rest at the origin in a uniform electric field in the positive x direction with magnitude 850 N/C. What is the change in the electric potential energy of the protonfield system when the proton travels to x = 2.50 m? (a) 3.40 1016 J (b) 3.40 1016 J (c) 2.50 1016 J (d) 2.50 1016 J (e) 1.60 1019 Jarrow_forwardGive a plausible argument as to why the electric field outside an infinite charged sheet is constant.arrow_forwardA proton and an alpha particle (charge = 2e, mass = 6.64 1027 kg) are initially at rest, separated by 4.00 1015 m. (a) If they are both released simultaneously, explain why you cant find their velocities at infinity using only conservation of energy. (b) What other conservation law can be applied in this case? (c) Find the speeds of the proton and alpha particle, respectively, at infinity.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY