Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 38P
The potential difference across a cell membrane is 65 mV. On the outside are 1.5 × 106 singly ionized potassium atoms. Assuming an equal negative charge on the inside, find the membrane’s capacitance.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two equal air-filled capacitors of Co= 15 µF are connected in series. A dielectric slab of constant K is inserted inside one of them to
fully occupy the space between the conductors. The equivalent capacitance of the combination becomes Ceg 13.84 µF. Find the
value of K.
Find the equivalent capacitance for the combination of capacitances shown in Figure, across which potential difference V is applied. Assume C1= 10 µF, C2 = 20 µF, C3 = 30 µF and C4 = 40 µF. (b) The potential difference applied to the input terminals in Fig. is I2.5 V. What is the charge on C3?
Suppose a capacitor consists of two coaxial thin cylindrical conductors. The inner cylinder of radius ra has a charge of +Q, while the outer cylinder of radius rb has charge -Q.
The electric field E at a radial distance r from the central axis is given by the function:
E = ae Trao + B/r + bo
where alpha (a), beta (ß), ao and bo are constants. Find an expression for its capacitance.
First, let us derive the potential difference ab between the two conductors. The potential difference is related to the electric field by:
Vob =
- S *Edr= - ["Edr
Calculating the antiderivative or indefinite integral,
Vab = (-aage"
o-r/ao + B
+ bo
By definition, the capacitance C is related to the charge and potential difference by:
C =
Evaluating with the upper and lower limits of integration for Vab, then simplifying:
C = Q/(
(erb/ao - eralao) + ß In(
) + bo (
))
Chapter 23 Solutions
Essential University Physics (3rd Edition)
Ch. 23.1 - Three positive charges and one negative charge,...Ch. 23.2 - If I give you a 5-gallon bucket, you know how much...Ch. 23.3 - You need to replace a capacitor with one that can...Ch. 23.3 - You have two identical capacitors with capacitance...Ch. 23.4 - Youre at a point P a distance a from a point...Ch. 23 - Two positive point charges are infinitely far...Ch. 23 - How does the energy density at a certain distance...Ch. 23 - A dipole consists of two equal but opposite...Ch. 23 - Charge is spread over the surface of a balloon,...Ch. 23 - Does the superposition principle hold for...
Ch. 23 - A student argues that the total energy associated...Ch. 23 - A capacitor is said to carry a charge Q. Whats the...Ch. 23 - Does the capacitance describe the maximum amount...Ch. 23 - Is a force needed to hold the plates of a charged...Ch. 23 - A solid conducting slab is inserted between the...Ch. 23 - Two capacitors contain equal amounts of energy,...Ch. 23 - A parallel-plate capacitor is connected to a...Ch. 23 - Four 75-C charges, initially far apart, are...Ch. 23 - Three point charges +q and a fourth, 12q, are...Ch. 23 - Repeat Exercise 14 for the case when the fourth...Ch. 23 - If the three particles in Fig. 23.1 have identical...Ch. 23 - A crude model of the water molecule has a...Ch. 23 - A capacitor consists of square conducting plates...Ch. 23 - An uncharged capacitor has parallel plates 5.0 cm...Ch. 23 - (a) How much charge must be transferred between...Ch. 23 - A capacitors plates hold 1.3 C when charged to 60...Ch. 23 - Show that the units of 0 may be written as F/m.Ch. 23 - Find the capacitance of a parallel-plate capacitor...Ch. 23 - A parallel-plate capacitor with 1.1-mm plate...Ch. 23 - The power supply in a stereo receiver contains a...Ch. 23 - Find the capacitance of a capacitor that stores...Ch. 23 - You have a 1.0-F and a 2.0-F capacitor. What...Ch. 23 - Two capacitors are connected in series and the...Ch. 23 - (a) Find the equivalent capacitance of the...Ch. 23 - Youre given three capacitors: 1.0 F, 2.0 F, and...Ch. 23 - The energy density in a uniform electric field is...Ch. 23 - A car battery stores about 4 MJ of energy. If this...Ch. 23 - Air undergoes dielectric breakdown at a field...Ch. 23 - Consider a proton to be a uniformly charged sphere...Ch. 23 - A charge Q0 is at the origin. A second charge. Qx...Ch. 23 - A conducting sphere of radius a is surrounded by a...Ch. 23 - Two closely spaced square conducting plates...Ch. 23 - The potential difference across a cell membrane is...Ch. 23 - Which can store more energy: a 1.0-F capacitor...Ch. 23 - A 0.01-F, 300-V capacitor costs 25; a 0.1-F, 100-V...Ch. 23 - A medical defibrillator stores 950 J in a 100-F...Ch. 23 - A camera requires 5.0 J of energy for a flash...Ch. 23 - Engineers testing an ultracapacitor (see...Ch. 23 - Your companys purchasing department bought lots of...Ch. 23 - Whats the equivalent capacitance measured between...Ch. 23 - In Fig. 23.14, find the energy stored in the 1-F...Ch. 23 - Capacitors C1, and C2 are in series, with voltage...Ch. 23 - Youre evaluating a new hire in your companys...Ch. 23 - A parallel-plate capacitor has plates with area 50...Ch. 23 - A 470-pF capacitor consists of two 15-cm-radius...Ch. 23 - The first accurate estimate of cell membrane...Ch. 23 - Your company is still stuck with those 2-F...Ch. 23 - A cubical region 1.0 m on a side is located...Ch. 23 - A sphere of radius R contains charge Q spread...Ch. 23 - A sphere of radius R carries total charge Q...Ch. 23 - Prob. 56PCh. 23 - Two widely separated 4.0-mm-diameter water drops...Ch. 23 - A 2.1-mm-diameter wire carries a uniform line...Ch. 23 - A typical lightning flash transfers 30 C across a...Ch. 23 - A capacitor consists of two long concentric metal...Ch. 23 - A capacitor consists of a conducting sphere of...Ch. 23 - Show that the result of Problem 61 reduces to that...Ch. 23 - A solid sphere contains a uniform volume charge...Ch. 23 - An air-insulated parallel-plate capacitor of...Ch. 23 - Repeat parts (b) and (c) of Problem 64, now...Ch. 23 - A transmission line consists of two parallel...Ch. 23 - An infinitely long rod of radius R carries uniform...Ch. 23 - (a) Write the electrostatic potential energy of a...Ch. 23 - An unknown capacitor C is connected in series with...Ch. 23 - What total capacitance is required if the...Ch. 23 - If it were technically and economically feasible...Ch. 23 - While theyre firing, the average power delivered...Ch. 23 - Among the capacitors that store energy at NIF are...
Additional Science Textbook Solutions
Find more solutions based on key concepts
20. What is a rift? Give an example.
Conceptual Physical Science (6th Edition)
An atom in an excited state emits a burst of light. What happens to the atoms mass?
Essential University Physics: Volume 2 (3rd Edition)
What is the source of energy that powers a hydroelectric power plant?
Conceptual Integrated Science
52. Actual velocity data for a lion pursuing prey are shown in Figure P2.52. Estimate:
Figure P2.52
a. The ini...
College Physics: A Strategic Approach (4th Edition)
(II) To make a secure fit, rivets that are larger than the rivet hole are often used and the rivet is cooled (u...
Physics for Scientists and Engineers with Modern Physics
The absence of any scientific evidence for alien visitation on Earth implies that civilizations are rare and th...
Life in the Universe (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What If? The two capacitors of Problem 13 (C1 = 5.00 F and C2 = 12.0 F) are now connected in series and to a 9.00-Y battery. Find (a) the equivalent capacitance of the combination. (b) the potential difference across each capacitor, and (c) the charge on each capacitor.arrow_forwardBy what factor is the capacitance of a metal sphere multiplied if its volume is tripled? (a) 3 (b) 31/3 (c) 1 (d) 31/3 (e) 13arrow_forwardA pair of capacitors with capacitances CA = 3.70 F and CB = 6.40 F are connected in a network. What is the equivalent capacitance of the pair of capacitors if they are connected a. in parallel and b. in series?arrow_forward
- A uniform electric field E = 3 000 V/m exists within a certain region. What volume of space contains an energy equal to 1.00 107 J? Express your answer in cubic meters and in liters.arrow_forwardAn electric potential exists in a region of space such that V = 8x4 2y2 + 9z3 and V is in units of volts, when x, y, and z are in meters. a. Find an expression for the electric field as a function of position. b. What is the electric field at (2.0 m, 4.5 m, 2.0 m)?arrow_forwardAn arrangement of capacitors is shown in Figure P27.23. a. If C = 9.70 105 F, what is the equivalent capacitance between points a and b? b. A battery with a potential difference of 12.00 V is connected to a capacitor with the equivalent capacitance. What is the energy stored by this capacitor? Figure P27.23 Problems 23 and 24.arrow_forward
- A parallel-plate capacitor is charged and then is disconnected from the battery. By what factor does the stored energy change when the plate separation is then doubled? (a) It becomes four times larger. (b) It becomes two times larger. (c) It stays the same. (d) It becomes one-half as large. (e) It becomes one-fourth as large.arrow_forwardGiven the arrangement of capacitors in Figure P27.23, find an expression for the equivalent capacitance between points a and b. Figure P27.23 Problems 23 and 24.arrow_forwardA spherical capacitor consists of a spherical conducting shell of radius b and charge 2Q that is concentric with a smaller conducting sphere of radius a and charge +Q (Fig. P20.36). (a) Show that its capacitance is C=abke(ba) (b) Show that as b approaches infinity, the capacitance approaches the value a/ke = 40a. Figure P20.36arrow_forward
- (i) Rank the following five capacitors from greatest to smallest capacitance, noting any cases of equality, (a) a 20-F capacitor with a 4-V potential difference between its plates (b) a 30-F capacitor with charges of magnitude 90 C on each plate (c) a capacitor with charges of magnitude 80 C on its plates, differing by 2 V in potential. (d) a 10-F capacitor storing energy 125 J (e) a capacitor storing energy 250 J with a 10-V potential difference (ii) Rank the same capacitors in part (i) from largest to smallest according to the potential difference between the plates, (iii) Rank the capacitors in part (i) in the order of the magnitudes of the charges on their plates, (iv) Rank the capacitors in part (i) in the order of the energy they store.arrow_forwardAn electronics technician wishes to construct a parallel plate capacitor using rutile ( = 100) as the dielectric. The area of the plates is 1.00 cm2. What is the capacitance if the rutile thickness is 1.00 mm? (a) 88.5 pF (b) 177 pF (c) 8.85 F (d) 100 F (e) 35.4 Farrow_forwardAccording to UE=12C(V)2 (Eq. 27.3), a greater capacitance means more energy is stored by the capacitor, but according to UE = Q2/2C (Eq. 27.2), a greater capacitance means less energy is stored. How can both of these equations be correct?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY