bartleby

Videos

Question
Book Icon
Chapter 23, Problem 66P

(a)

To determine

The emf induced in the loop POQ.

(a)

Expert Solution
Check Mark

Answer to Problem 66P

The emf induced is 0.125V in the clockwise direction.

Explanation of Solution

Write the equation for the emf induced in the loop.

    ε=NdϕBdt        (I)

Here, N is the number of turns in the loop, ϕB is the magnetic flux through the loop POQ. Write the equation for the magnetic flux through the coil.

    ϕB=B.A        (II)

Here, B is the magnetic field and A is the area of the loop POQ. Substitute equation (I) in equation (II).

    ε=Nddt(BAcosθ)        (III)

It is given that the area of the loop is θa2/2. Substitute this in equation (III).

    ε=Nddt[B(θa2/2)cosθ]=NddtBθa22cosθ=NBa22dθdtcosθ=12NBa2ωcosθ

Here, ω is the angular frequency of rotation of the loop.

Conclusion:

Substitute 1 for N, 0.500T for B, 50.0cm for a, 2.00rad/s for ω and 0° for θ.

    ε=12(1)(0.500T)(0.500m)2(2.00rad/s)cos0°=0.125V

The negative sign shows the existence of clockwise current due to the induced emf. Therefore, the emf induced is 0.125V in the clockwise direction.

(b)

To determine

The current in the loop POQ

(b)

Expert Solution
Check Mark

Answer to Problem 66P

The current in the loop is 0.020A in the clockwise direction.

Explanation of Solution

Write the equation for the angle θ in the loop POQ.

    θ=ωt        (IV)

Here, ω is the angular speed of rotation of the loop and t is the time.

Substitute 2.00rad/s for ω and 0.250s for t.

    θ=(2.00rad/s)(0.250s)=0.500rad

Write the equation for the length of the arc PQ.

    PQ=aθ        (V)

Here, θ is the angle given in the loop POQ and a is the length of the rod connecting O and P. Substitute 0.500rad for θ and 50.0cm for a.

    PQ=(0.500m)(0.500rad)=0.250m

The length of the loop POQ is the sum of the arc PQ, rod connecting O and P and the pivoted rod connecting O and Q.

    POQ=0.500m+0.500m0.250m=1.25m

The resistance per unit length of the loop POQ is 5.00Ω/m and the length of the loop POQ is 1.25m. Therefore, the resistance of the loop POQ is the resistance per unit length multiplied the length of the loop POQ.

    R=(5.00Ω/m)(1.25m)=6.25Ω

Write the equation for the induced current in the loop.

    I=εR

Here, ε is the induced emf and R is the resistance of the loop POQ.

Conclusion:

Substitute 0.125V for ε and 6.25Ω for R.

    I=0.125V6.25Ω=0.020A

Therefore, the current in the loop is 0.020A in the clockwise direction.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Two concrete spans of a 234 m long bridge are placed end to end so that no room is allowed for expansion (Figure a). Each span therefore has a length of L0 = 117 m.  If the temperature increases by 17.8 °C, what is the height y to which the spans rise when they buckle (Figure b)? (The coefficient of linear expansion of concrete is 1.20⋅10−51.20⋅10-5  °C−1.)
Monkey D. Luffy, from One Piece can inflate himself like a balloon to a size of 6.98 m3 by inhaling 1.74⋅10^26 molecules of air. If the air is at 20.9 ˚C, the pressure inside Luffy is 101277.062 Pa. kB=1.38⋅10^−23  J/K. The total internal energy of the gas inside Luffy is 1065333.93 J. How fast, on average, is the air molecules inside Luffy traveling at?  The average mass of an air molecule (considering the various gasses involved) is 4.51 x 10^-26 kg.
The Dungeons & Dragons spell “Stinking Cloud” fills a 949 m^3 volume of air with a cloud of gas. The pressure of the gas is the same as the air, 101,325 Pa, and is at 29.2°C. There are 2.304x10^28 molecules of gas. What is the total internal energy of the gas?

Chapter 23 Solutions

Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term

Ch. 23 - Prob. 2OQCh. 23 - Prob. 3OQCh. 23 - A circular loop of wire with a radius of 4.0 cm is...Ch. 23 - A rectangular conducting loop is placed near a...Ch. 23 - Prob. 6OQCh. 23 - Prob. 7OQCh. 23 - Prob. 8OQCh. 23 - A square, flat loop of wire is pulled at constant...Ch. 23 - The bar in Figure OQ23.10 moves on rails to the...Ch. 23 - Prob. 11OQCh. 23 - Prob. 12OQCh. 23 - A bar magnet is held in a vertical orientation...Ch. 23 - Prob. 14OQCh. 23 - Two coils are placed near each other as shown in...Ch. 23 - A circuit consists of a conducting movable bar and...Ch. 23 - Prob. 17OQCh. 23 - Prob. 1CQCh. 23 - Prob. 2CQCh. 23 - Prob. 3CQCh. 23 - Prob. 4CQCh. 23 - Prob. 5CQCh. 23 - Prob. 6CQCh. 23 - Prob. 7CQCh. 23 - Prob. 8CQCh. 23 - Prob. 9CQCh. 23 - Prob. 10CQCh. 23 - Prob. 11CQCh. 23 - Prob. 12CQCh. 23 - Prob. 13CQCh. 23 - Prob. 14CQCh. 23 - Prob. 15CQCh. 23 - Prob. 16CQCh. 23 - Prob. 1PCh. 23 - An instrument based on induced emf has been used...Ch. 23 - A flat loop of wire consisting of a single turn of...Ch. 23 - Prob. 4PCh. 23 - Prob. 5PCh. 23 - Prob. 6PCh. 23 - A loop of wire in the shape of a rectangle of...Ch. 23 - When a wire carries an AC current with a known...Ch. 23 - Prob. 9PCh. 23 - Prob. 10PCh. 23 - Prob. 11PCh. 23 - A piece of insulated wire is shaped into a figure...Ch. 23 - A coil of 15 turns and radius 10.0 cm surrounds a...Ch. 23 - Prob. 14PCh. 23 - Figure P23.15 shows a top view of a bar that can...Ch. 23 - Prob. 16PCh. 23 - Prob. 17PCh. 23 - A metal rod of mass m slides without friction...Ch. 23 - Review. After removing one string while...Ch. 23 - Prob. 20PCh. 23 - The homopolar generator, also called the Faraday...Ch. 23 - Prob. 22PCh. 23 - A long solenoid, with its axis along the x axis,...Ch. 23 - Prob. 24PCh. 23 - Prob. 25PCh. 23 - Prob. 26PCh. 23 - A coil of area 0.100 m2 is rotating at 60.0 rev/s...Ch. 23 - A magnetic field directed into the page changes...Ch. 23 - Within the green dashed circle shown in Figure...Ch. 23 - Prob. 30PCh. 23 - Prob. 31PCh. 23 - Prob. 32PCh. 23 - Prob. 33PCh. 23 - Prob. 34PCh. 23 - Prob. 35PCh. 23 - Prob. 36PCh. 23 - Prob. 37PCh. 23 - Prob. 38PCh. 23 - Prob. 39PCh. 23 - Prob. 40PCh. 23 - Prob. 41PCh. 23 - Prob. 42PCh. 23 - Prob. 43PCh. 23 - Prob. 44PCh. 23 - Prob. 45PCh. 23 - Prob. 46PCh. 23 - Prob. 47PCh. 23 - Prob. 48PCh. 23 - Prob. 49PCh. 23 - Prob. 50PCh. 23 - Prob. 51PCh. 23 - Prob. 52PCh. 23 - Prob. 53PCh. 23 - Prob. 54PCh. 23 - Prob. 55PCh. 23 - Prob. 56PCh. 23 - Prob. 57PCh. 23 - Figure P23.58 is a graph of the induced emf versus...Ch. 23 - Prob. 59PCh. 23 - Prob. 60PCh. 23 - The magnetic flux through a metal ring varies with...Ch. 23 - Prob. 62PCh. 23 - Prob. 63PCh. 23 - Prob. 64PCh. 23 - Prob. 65PCh. 23 - Prob. 66PCh. 23 - Prob. 67PCh. 23 - Prob. 68PCh. 23 - Prob. 69PCh. 23 - Prob. 70PCh. 23 - Prob. 71PCh. 23 - Prob. 72PCh. 23 - Review. The use of superconductors has been...Ch. 23 - Prob. 74PCh. 23 - Prob. 75P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What is Electromagnetic Induction? | Faraday's Laws and Lenz Law | iKen | iKen Edu | iKen App; Author: Iken Edu;https://www.youtube.com/watch?v=3HyORmBip-w;License: Standard YouTube License, CC-BY