
Concept explainers
(a)
The expression for the current in the light bulb
(a)

Answer to Problem 56P
The expression for the current is
Explanation of Solution
Write the equation for the current in the bulb in term of the emf.
Here,
Here,
Conclusion:
Substitute equation (II) in equation (I).
Therefore, the expression for the current in the light bulb as a function of
(b)
The analysis model describing the moving bar
(b)

Answer to Problem 56P
The analysis model describing the moving when the bulb has maximum power is particle under equilibrium.
Explanation of Solution
Write the equation for the power of the light bulb.
Here,
From the above equation, both the force and the velocity of the moving have to be maximum for the power on the light bulb to be maximum. The condition of maximum power points to energy loss which could happen only for a particle in equilibrium.
Conclusion:
Therefore, the analysis model describing the moving when the bulb has maximum power is particle under equilibrium.
(c)
The speed of the bar
(c)

Answer to Problem 56P
The speed of the bar at maximum power is
Explanation of Solution
The magnetic flux points into the page thereby making the counterclockwise current to move out of the page. Write the equation for the magnetic force that the current is flowing upwards in the bar.
Here,
Conclusion:
Substitute
Therefore, the speed of the bar at maximum power is
(d)
The current in the bulb
(d)

Answer to Problem 56P
The current in the light bulb at maximum power is
Explanation of Solution
Substitute equation (V) in equation (III).
Conclusion:
Substitute
Therefore, the current in the light bulb at maximum power is
(e)
The maximum power delivered
(e)

Answer to Problem 56P
The maximum power delivered to the light bulb is
Explanation of Solution
Write the equation for the power in the light bulb.
Here,
Conclusion:
Substitute
Therefore, the maximum power delivered to the light bulb is
(f)
The maximum input power delivered
(f)

Answer to Problem 56P
The maximum input power delivered to the bar is
Explanation of Solution
Write the equation for the power delivered to the bar.
Here,
Conclusion:
Substitute
Therefore, the maximum input power delivered to the bar is
(g)
Whether the speed changes or not
(g)

Answer to Problem 56P
The speed changes when the resistance increases.
Explanation of Solution
Write the equation for the speed of the bar from equation (V).
Hence, the speed of the bar and the resistance are proportional to each other, given, all other quantities are kept constant.
Conclusion:
Therefore, the speed of the bar changes when the resistance increases.
(h)
Whether the speed increases or decreases
(h)

Answer to Problem 56P
The speed changes increases the resistance increases.
Explanation of Solution
Write the equation for the speed of the bar from equation (V).
Hence, the speed of the bar and the resistance are proportional to each other, given, all other quantities are kept constant.
Conclusion:
Therefore, the speed of the bar increases when the resistance increases.
(i)
Whether the power changes
(i)

Answer to Problem 56P
The power changes when the current increases
Explanation of Solution
An increase in current leads to a change in the mechanical load as the current as the current is analogous to mechanical load.
The mechanical power depends on the load. Therefore, the change in current will lead to change in the power.
Conclusion:
Therefore, the power changes when the current increases.
(j)
Whether the power is smaller or larger
(j)

Answer to Problem 56P
The power changes and becomes larger.
Explanation of Solution
According to ohm’s law, the current and resistance are inversely proportional to each other. If the current and resistance has to increase together, the load has to increase further.
The increase in the load will increase the power.
Conclusion:
Therefore, the power changes and becomes larger when the current and resistance increases.
Want to see more full solutions like this?
Chapter 23 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- (Figure 1)In each case let w be the weight of the suspended crate full of priceless art objects. The strut is uniform and also has weight w Find the direction of the force exerted on the strut by the pivot in the arrangement (a). Express your answer in degrees. Find the tension Tb in the cable in the arrangement (b). Express your answer in terms of w. Find the magnitude of the force exerted on the strut by the pivot in the arrangement (b). Express your answer in terms of w.arrow_forward(Figure 1)In each case let ww be the weight of the suspended crate full of priceless art objects. The strut is uniform and also has weight w. Find the direction of the force exerted on the strut by the pivot in the arrangement (b). Express your answer in degrees.arrow_forwardA 70.0 cm, uniform, 40.0 N shelf is supported horizontally by two vertical wires attached to the sloping ceiling (Figure 1). A very small 20.0 N tool is placed on the shelf midway between the points where the wires are attached to it. Find the tension in the left-hand wire. Express your answer with the appropriate units.arrow_forward
- Find the total bind Mev. binding energy for 13 Carbon, 6C (atomic mass = 13.0033554)arrow_forwardWhat is the 27 energy absorbed in this endothermic Auclear reaction 2] Al + 'n → 27 Mg + ! H? (The atom mass of "Al is 26.981539u. and that of 11 Mg is 26.984341u) MeVarrow_forwardWhat is the energy released in this nuclear reaction 1 F + "', H-1 O+ He? 19 19 16 (The atomic mass of 1F is 18.998403 u, and that of 20 is 15.9949154) MeV.arrow_forward
- What is the energy released in this B+ nuclear reaction خالد 2½ Al w/ Mg + ie? (The atomic mass of 11 Al is 23.9999394 and that > of 12 Mg is 23.985041 u) MeV.arrow_forwardWhat is the energy released / absorbed in this nuclear reaction 14 N+ & He → » O + ! N? (The atomic mass of 14 N is 14.003074u. 17N+ and that of 10 is 16.9991324). MeVarrow_forwardCan someone help me answer this question thanks.arrow_forward
- Can someone help me with this question thanks.arrow_forward4B. Four electrons are located on the corners of a square, one on each corner, with the sides of the square being 25 cm long. a) Draw a sketch of the scenario and use your sketch to b) Determine the total force (magnitude and direction) on one of the electrons from the other three?arrow_forwardPortfolio Problem 3. A ball is thrown vertically upwards with a speed vo from the floor of a room of height h. It hits the ceiling and then returns to the floor, from which it rebounds, managing just to hit the ceiling a second time. Assume that the coefficient of restitution between the ball and the floor, e, is equal to that between the ball and the ceiling. Compute e.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





