
Essential University Physics
4th Edition
ISBN: 9780134988566
Author: Wolfson, Richard
Publisher: Pearson Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 23, Problem 64P
An air-insulated parallel-plate capacitor of capacitance C0 is chained to voltage V0 and then disconnected from the charging battery. A slab with dielectric constant κ and thickness equal to the capacitor spacing is then inserted halfway into the capacitor (Fig. 23.16). Determine (a) the new capacitance, (b) the stored energy, and (c) the force on the slab in terms of C0, V0, κ, and the plate length L.
FIGURE 23.16 Problems 64 and65
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
For each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank you
A planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).
What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V)
ammeter
I =
Chapter 23 Solutions
Essential University Physics
Ch. 23.1 - Three positive charges and one negative charge,...Ch. 23.2 - If I give you a 5-gallon bucket, you know how much...Ch. 23.3 - You need to replace a capacitor with one that can...Ch. 23.3 - GOT IT? 23.4 You have two identical capacitors...Ch. 23.4 - Youre at a point P a distance a from a point...Ch. 23 - Two positive point charges are infinitely far...Ch. 23 - How does the energy density at a certain distance...Ch. 23 - A dipole consists of two equal but opposite...Ch. 23 - Charge is spread over the surface of a balloon,...Ch. 23 - Does the superposition principle hold for...
Ch. 23 - A capacitor is said to carry a charge Q. Whats the...Ch. 23 - Does the capacitance describe the maximum amount...Ch. 23 - Is a force needed to hold the plates of a charged...Ch. 23 - Two capacitors contain equal amounts of energy,...Ch. 23 - A parallel-plate capacitor is connected to a...Ch. 23 - Four 75-C charges, initially far apart, are...Ch. 23 - Three point charges +Q, and a fourth, –Q, lie at...Ch. 23 - A crude model of the water molecule has a...Ch. 23 - A capacitor consists of square conducting plates...Ch. 23 - An uncharged capacitor has parallel plates 5.0 cm...Ch. 23 - (a) How much charge must be transferred between...Ch. 23 - A capacitors plates hold 1.3 C when charged to 60...Ch. 23 - Show that the units of 0 may be written as F/m.Ch. 23 - Find the capacitance of a parallel-plate capacitor...Ch. 23 - A parallel-plate capacitor with 1.1-mm plate...Ch. 23 - FastCAP Systems is a cutting-edge ultracapacitor...Ch. 23 - You have a 1.0-F and a 2.0-F capacitor. What...Ch. 23 - (a) Find the equivalent capacitance of the...Ch. 23 - Youre given three capacitors: 1.0 F, 2.0 F, and...Ch. 23 - The energy density in a uniform electric field is...Ch. 23 - A car battery stores about 4 MJ of energy. If this...Ch. 23 - Air undergoes dielectric breakdown at a field...Ch. 23 - Consider a proton to be a uniformly charged sphere...Ch. 23 - Example 23.3: Find the equivalent capacitance in...Ch. 23 - Example 23.3: What voltage applied between points...Ch. 23 - Example 23.3: Find the equivalent capacitance...Ch. 23 - Example 23.3: In the circuit of Fig. 23.14, how...Ch. 23 - Example 23.5: A spherical shell of radius R...Ch. 23 - Prob. 34ECh. 23 - Example 23.5: A sphere of radius R contains charge...Ch. 23 - Prob. 36ECh. 23 - A charge Q0 is at the origin. A second charge. Qx...Ch. 23 - A conducting sphere of radius a is surrounded by a...Ch. 23 - Two closely spaced square conducting plates...Ch. 23 - The potential difference across a cell membrane is...Ch. 23 - Which can store more energy: a 1.0-F capacitor...Ch. 23 - A 0.01-F, 300-V capacitor costs 25; a 0.1-F, 100-V...Ch. 23 - A medical defibrillator stores 950 J in a 100-F...Ch. 23 - A camera requires 5.0 J of energy for a flash...Ch. 23 - Engineers testing an ultracapacitor (see...Ch. 23 - Your companys purchasing department bought lots of...Ch. 23 - Capacitors C1, and C2 are in series, with voltage...Ch. 23 - Youre evaluating a new hire in your companys...Ch. 23 - A parallel-plate capacitor has plates with area 50...Ch. 23 - A 470-pF capacitor consists of two 15-cm-radius...Ch. 23 - The first accurate estimate of cell membrane...Ch. 23 - Your company is still stuck with those 2-F...Ch. 23 - A cubical region 1.0 m on a side is located...Ch. 23 - The electric field within a spherical region of...Ch. 23 - A sphere of radius R carries total charge Q...Ch. 23 - We live inside a giant capacitor! Its plates are...Ch. 23 - Two widely separated 4.0-mm-diameter water drops...Ch. 23 - A 2.1-mm-diameter wire carries a uniform line...Ch. 23 - A typical lightning flash transfers 30 C across a...Ch. 23 - A capacitor consists of two long concentric metal...Ch. 23 - A capacitor consists of a conducting sphere of...Ch. 23 - Show that the result of Problem 61 reduces to that...Ch. 23 - A solid sphere contains a uniform volume charge...Ch. 23 - An air-insulated parallel-plate capacitor of...Ch. 23 - Repeat parts (b) and (c) of Problem 64, now...Ch. 23 - A transmission line consists of two parallel...Ch. 23 - An infinitely long rod of radius R carries uniform...Ch. 23 - (a) Write the electrostatic potential energy of a...Ch. 23 - An unknown capacitor C is connected in series with...Ch. 23 - What total capacitance is required if the...Ch. 23 - If it were technically and economically feasible...Ch. 23 - While theyre firing, the average power delivered...Ch. 23 - Among the capacitors that store energy at NIF are...
Additional Science Textbook Solutions
Find more solutions based on key concepts
4. What five specific threats to biodiversity are described in this chapter? Provide an example of each.
Biology: Life on Earth (11th Edition)
WHAT IF? Most prairies experience regular fires, typically every few years. If these disturbances were relativ...
Campbell Biology (11th Edition)
The glycine cleavage system is a group of four enzymes that together catalyze the following reaction: glycine+T...
Organic Chemistry (8th Edition)
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
66. You need to use a 24-cm-focal-length lens to produce an inverted image twice the height of an object. At wh...
College Physics: A Strategic Approach (3rd Edition)
What two body structures contain flexible elastic cartilage?
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- simple diagram to illustrate the setup for each law- coulombs law and biot savart lawarrow_forwardA circular coil with 100 turns and a radius of 0.05 m is placed in a magnetic field that changes at auniform rate from 0.2 T to 0.8 T in 0.1 seconds. The plane of the coil is perpendicular to the field.• Calculate the induced electric field in the coil.• Calculate the current density in the coil given its conductivity σ.arrow_forwardAn L-C circuit has an inductance of 0.410 H and a capacitance of 0.250 nF . During the current oscillations, the maximum current in the inductor is 1.80 A . What is the maximum energy Emax stored in the capacitor at any time during the current oscillations? How many times per second does the capacitor contain the amount of energy found in part A? Please show all steps.arrow_forward
- A long, straight wire carries a current of 10 A along what we’ll define to the be x-axis. A square loopin the x-y plane with side length 0.1 m is placed near the wire such that its closest side is parallel tothe wire and 0.05 m away.• Calculate the magnetic flux through the loop using Ampere’s law.arrow_forwardDescribe the motion of a charged particle entering a uniform magnetic field at an angle to the fieldlines. Include a diagram showing the velocity vector, magnetic field lines, and the path of the particle.arrow_forwardDiscuss the differences between the Biot-Savart law and Coulomb’s law in terms of their applicationsand the physical quantities they describe.arrow_forward
- Explain why Ampere’s law can be used to find the magnetic field inside a solenoid but not outside.arrow_forward3. An Atwood machine consists of two masses, mA and m B, which are connected by an inelastic cord of negligible mass that passes over a pulley. If the pulley has radius RO and moment of inertia I about its axle, determine the acceleration of the masses mA and m B, and compare to the situation where the moment of inertia of the pulley is ignored. Ignore friction at the axle O. Use angular momentum and torque in this solutionarrow_forwardA 0.850-m-long metal bar is pulled to the right at a steady 5.0 m/s perpendicular to a uniform, 0.650-T magnetic field. The bar rides on parallel metal rails connected through a 25-Ω, resistor (Figure 1), so the apparatus makes a complete circuit. Ignore the resistance of the bar and the rails. Please explain how to find the direction of the induced current.arrow_forward
- For each of the actions depicted, determine the direction (right, left, or zero) of the current induced to flow through the resistor in the circuit containing the secondary coil. The coils are wrapped around a plastic core. Immediately after the switch is closed, as shown in the figure, (Figure 1) in which direction does the current flow through the resistor? If the switch is then opened, as shown in the figure, in which direction does the current flow through the resistor? I have the answers to the question, but would like to understand the logic behind the answers. Please show steps.arrow_forwardWhen violet light of wavelength 415 nm falls on a single slit, it creates a central diffraction peak that is 8.60 cm wide on a screen that is 2.80 m away. Part A How wide is the slit? ΟΙ ΑΣΦ ? D= 2.7.10-8 Submit Previous Answers Request Answer × Incorrect; Try Again; 8 attempts remaining marrow_forwardTwo complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning


College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Physics Capacitor & Capacitance part 7 (Parallel Plate capacitor) CBSE class 12; Author: LearnoHub - Class 11, 12;https://www.youtube.com/watch?v=JoW6UstbZ7Y;License: Standard YouTube License, CC-BY