Batteries are recharged by connecting them to a power supply (i.e., another battery) of greater emf in such a way that the current flows into the positive terminal of the battery being recharged, as was shown in Example 23.1. This reverse current through the battery replenishes its chemicals. The current is kept fairly low so as not to overheat the battery being recharged by dissipating energy in its internal resistance. a. Suppose the real battery of Figure P23.55 is rechargeable. What emf power supply should be used for a 0.75 A recharging current? b. If this power supply charges the battery for 10 minutes, how much energy goes into the battery? How much is dissipated as thermal energy in the internal resistance?
Batteries are recharged by connecting them to a power supply (i.e., another battery) of greater emf in such a way that the current flows into the positive terminal of the battery being recharged, as was shown in Example 23.1. This reverse current through the battery replenishes its chemicals. The current is kept fairly low so as not to overheat the battery being recharged by dissipating energy in its internal resistance. a. Suppose the real battery of Figure P23.55 is rechargeable. What emf power supply should be used for a 0.75 A recharging current? b. If this power supply charges the battery for 10 minutes, how much energy goes into the battery? How much is dissipated as thermal energy in the internal resistance?
Batteries are recharged by connecting them to a power supply (i.e., another battery) of greater emf in such a way that the current flows into the positive terminal of the battery being recharged, as was shown in Example 23.1. This reverse current through the battery replenishes its chemicals. The current is kept fairly low so as not to overheat the battery being recharged by dissipating energy in its internal resistance.
a. Suppose the real battery of Figure P23.55 is rechargeable. What emf power supply should be used for a 0.75 A recharging current?
b. If this power supply charges the battery for 10 minutes, how much energy goes into the battery? How much is dissipated as thermal energy in the internal resistance?
Using the Experimental Acceleration due to Gravity values from each data table, Data Tables 1, 2, and 3; determine the Standard Deviation, σ, mean, μ, variance, σ2 and the 95% Margin of Error (Confidence Level) Data: Ex. Acc. 1: 12.29 m/s^2. Ex. Acc. 2: 10.86 m/s^2, Ex. Acc. 3: 9.05 m/s^2
In the Super Smash Bros. games the character Yoshi’s has a “ground pound” down special move where he launches himself downward to attack an enemy beneath him. A) If Yoshi flings himself downwards at 9.76 miles per hour to hit an enemy 10.5 m below him, how fast is Yoshi traveling when he hits the enemy? 1 mile = 1609 m B) How much time does it take Yoshi to hit the enemy beneath him?
No chatgpt pls will upvote
Chapter 23 Solutions
Mastering Physics with Pearson eText -- Standalone Access Card -- for College Physics: A Strategic Approach (3rd Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
How To Solve Any Resistors In Series and Parallel Combination Circuit Problems in Physics; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=eFlJy0cPbsY;License: Standard YouTube License, CC-BY